文章编号: 2095-2163(2020)02-0132-06

中图分类号: TN215 文献标志码: A

轨道板表面裂缝的热成像检测效果仿真分析

王登涛,路宏遥,孟翔震,苗 壮,赵晨晖 (上海工程技术大学城市轨道交通学院,上海 201620)

摘 要:采用红外热成像方法对轨道板表面裂缝夜间检测效果进行研究。基于红外热成像检测原理,通过推导夜间条件下轨 道板表面温差计算公式,得到了影响检测效果的主要因素。在此基础上,建立了含表面裂缝轨道板红外热成像检测模型,分 别对环境温度、裂缝宽度和裂缝长度的不同组合工况进行仿真计算。研究结果表明:当环境温度大于10℃时,利用热成像技 术可以在夜间实现对轨道板表面裂缝的有效检测,且环境温度越高、裂缝尺寸越大,检测效果越好。在20℃条件下,可以实现 对宽度大于0.1 mm,长度大于16 cm的细小裂缝的有效检测。

关键词:红外热成像;轨道板;表面裂缝;无损检测

Simulation analysis of thermal imaging detection effect of cracks on track plate surface

WANG Dengtao, LU Hongyao, MENG Xiangzhen, MIAO Zhuang, ZHAO Chenhui

(School of Urban Rail Transportation, Shanghai University of Engineering Science, Shanghai 201620, China)

[Abstract] The effect of night crack detection on track plate surface is studied by infrared thermal imaging. Based on the infrared thermal imaging detection principle, the main factors that affect the detection effect are obtained by deducing the calculation formula of temperature difference on the track plate surface under the condition of night. On this basis, the infrared thermal imaging detection model of track plate with surface cracks is established, and the simulation calculation is carried out for different combination conditions of ambient temperature, crack width and crack length. The results show that when the ambient temperature is greater than 10 $^{\circ}$ C, thermal imaging technology can be used to effectively detect cracks on the surface of the rail plate at night, and the higher the ambient temperature and the larger the crack size, the better the detection effect. Under the condition of 20 $^{\circ}$ C, the effective detection of small cracks larger than 0.1mm in width and 16cm in length can be realized.

[Key words] infrared thermal imaging; track slab; surface crack; non-destructive testing

0 引 言

无砟轨道是中国高速铁路的主要轨道结构形 式,在复杂服役环境以及长期列车荷载等因素的综 合影响下,轨道板表面出现了大量裂缝病害^[1-2]。 当轨道板表面出现裂缝病害时,一方面将破坏轨道 板结构的整体性,改变结构的受力分布,大大降低轨 道的结构承载力;另一方面,裂缝的存在又会导致水 分和空气等介质进入轨道板内部,引起混凝土碳化、 剥落,甚至钢筋腐化锈蚀等问题,造成轨道板的进一 步破坏,严重威胁轨道板的长期安全服役和列车行 车安全^[3-4]。因此,如何对轨道板表面裂缝实现及 时有效检测就成了轨道板结构维修中需要重点关注 的问题。目前,对于轨道板表面裂缝的检测主要依 靠人工巡检的方式^[5],受限于夜间天窗时间短、人 员经验不均衡、线路条件多样以及初期裂缝尺寸细 小、不易发现等问题,检测随机性和漏检性较高,并 不适应于实际工务部门的工作需要,因此有必要探 究新的适用于工务现场的检测方法。

红外热成像技术是一种新型无损检测技术,具 有全天候、高效率的特点,广泛应用于电力、石油、建 筑等多个领域的无损检测工作中^[6]。Titman 等 人^[7-8]利用红外热成像技术对道路、建筑外墙等大 型混凝土结构进行了检测研究,发现红外热成像技 术能够有效地对混凝土表面裂缝进行探测识别。林 隆荣等人^[9]也将热成像技术成功应用于树脂复合 材料的表面裂缝的检测工作中。但是现有研究多是 对不同材料表面裂缝进行定性研究,并未对影响表 面裂缝检测效果的主要因素进行分析与定量化总 结。

基于此,本文针对利用红外热成像方法对轨道

通讯作者: 路宏遥 Email: luhongyao1@163.com

收稿日期: 2019-11-12

基金项目:上海工程技术大学研究生创新项目(18KY1017)。

作者简介:王登涛(1994-),男,硕士研究生,主要研究方向:交通工程结构维护、保障与检测;路宏遥(1990-),男,实验师,主要研究方向:轨道 检测技术。

板表面裂缝夜间检测效果问题,在总结影响因素为 尺寸因素和温度因素的基础上,通过建立含表面裂 缝的轨道板红外热成像检测模型,分别对裂缝长度、 裂缝宽度和环境温度对检测效果的影响规律进行了 计算与分析,总结了主要检测范围和检测条件,以期 为工务部门针对性维修提供一定的技术支撑。

1 热成像检测原理

1.1 红外热成像检测原理

红外热成像检测技术是一种新型无损检测技术,红外热像仪通过光敏元件对物体发射的红外辐射进行探测后,经过光-电转换系统将搜集的光信号转化为电信号,并利用信号处理系统和显像系统将光信号输出为可见的红外热成像图。当物体表面出现损伤时,损伤部位将表现出不同于非损伤表面的红外辐射特性,并产生温度梯度差异,热像仪通过捕捉这种辐射差异,并以颜色不一的热像图形式反映出来,从而实现无损检测的目的^[10]。对于轨道板结构,当其表面出现裂缝病害时,由于裂缝内部空气介质与轨道板自身混凝土介质导热性能的差异性,空气与混凝土之间的热传导将劣于混凝土与混凝土之间的热传导,导致热量在裂缝区域形成积聚,形成表面温度梯度,从而在热像图上表现为"亮区"。

1.2 表面温差计算

对于夜间条件下的无缺陷轨道板,可将其看作 无限大平壁结构,满足一维热传导方程和边界条件 如下^[11-12]:

$$\frac{\partial}{\partial x} \bigotimes_{\mathbf{e}}^{\mathbf{e}} \frac{\partial T \ddot{\mathbf{o}}}{\partial x \, \mathbf{o}} = \rho c \, \frac{\partial T}{\partial t}, \qquad (1)$$
$$t = 0, T = T_{o}$$

当 $x = 0, \partial T / \partial x = 0; x = d, \lambda \cdot \partial T / \partial x = h(T - T_e),$ 令 $\theta = T - T_a,$ 则导热微分方程和边值条件可表

$$\frac{\partial\theta}{\partial t} = a \, \frac{\partial^2\theta}{\partial X^2},\tag{2}$$

$$t=0, \theta=\theta_0=T_0-T_a,$$

$$\stackrel{\text{\tiny def}}{=} x = 0, \, \partial\theta/\partial x = 0; \, x = d, \, \lambda \cdot \partial\theta/\partial x = h\theta_{\text{\tiny cos}}$$

其中, a 为导温系数, $a = \lambda/\rho c_{\circ}$ 采用无量纲法, 令 $F = \theta/\theta_{\circ}$ 为无量纲温度, X = x/d 为无量纲坐标,则导热微分方程和边值条件可进一步表示为:

$$\frac{\partial F}{\partial (at/d^2)} = \frac{\partial^2 F}{\partial X^2},$$

$$t = 0, F = F_0 = 1,$$
(3)

当
$$X = 0, \partial F / \partial X = 0; X = 1, \partial F / \partial X = hd \cdot F / \lambda_{\circ}$$

令傅里叶数 $F_{\circ} = at / d^{2}$, 表征轨道板非稳态导

热过程的无量纲时间;令毕渥数 $B_i = hd/\lambda$,表征轨 道板内部导热热阻和边界换热热阻之间的比值。则 可以得到无量纲温度 F 是关于傅里叶数 F_o 、毕渥数 B_i 和无量纲坐标 X 的函数,即:

$$F = g(F_o, B_i, X) , \qquad (4)$$

当轨道板表面出现裂缝病害时,假设裂缝上方 有一厚度趋近于无穷小的混凝土层,将裂缝病害转 化为内部缺陷。设裂缝区域轨道板表面温度为 T_i, 非裂缝区域轨道板表面温度为 T_i,则裂缝区域与非 裂缝区域表面温差可表示为:

$$\Delta T = T_l - T_h, \qquad (5)$$

根据式(5),结合裂缝自身长度l和宽度w因素的影响,含裂缝的轨道板表面温差 ΔT 可表示为以下函数形式:

$$\Delta T = g(\theta_0, t, a, d, \lambda, h, l, w) , \qquad (6)$$

各物理量量纲如下: θ_0 为 \mathbb{C} , t为 s, a为 m²·s⁻¹, d为 m, λ 为J·m⁻¹· \mathbb{C}^{-1} ·s⁻¹, h为 J·m⁻²· \mathbb{C}^{-1} ·s⁻¹, l为 m, w为 m;则基本量纲为 s, \mathbb{C} , m, J₀

根据 π 定理,选取 $\Delta T_{,t}$, λ 和 d 四个基本物理 量,则剩余 5 项无量纲 π 项可表示为:

$$\begin{aligned} \pi_{1} &= \frac{\theta_{0}}{\Delta T^{x_{1}} t^{y_{1}} \lambda^{z_{1}} d^{w_{1}}}, \ \pi_{2} &= \frac{a}{\Delta T^{x_{2}} t^{y_{2}} \lambda^{z_{2}} d^{w_{2}}}, \\ \pi_{3} &= \frac{h}{\Delta T^{x_{3}} t^{y_{3}} \lambda^{z_{3}} d^{w_{3}}}, \ \pi_{4} &= \frac{l}{\Delta T^{x_{4}} t^{y_{4}} \lambda^{z_{4}} d^{w_{4}}}, \ (7) \\ \pi_{5} &= \frac{w}{\Delta T^{x_{5}} t^{y_{5}} \lambda^{z_{5}} d^{w_{5}}}, \end{aligned}$$

根据量纲和谐原理, 求得各 π 项的指数如下:

$$\pi_1 = \frac{\theta_0}{\Delta T}, \ \pi_2 = \frac{at}{d^2}, \ \pi_3 = \frac{hd}{\lambda},$$
$$\pi_4 = \frac{l}{d}, \ \pi_5 = \frac{w}{d},$$
(8)

则得到无量纲方程:

$$F_{\mathbf{c}}^{\mathbf{a}\boldsymbol{\theta}_{0}}, \frac{at}{d^{2}}, \frac{hd}{\lambda}, \frac{l}{d}, \frac{w \ddot{\mathbf{o}}}{d \dot{\mathbf{\varphi}}} = 0, \qquad (9)$$

即:

$$\Delta T = f \mathbf{\hat{e}}_{\mathbf{\hat{e}}}^{\mathbf{a}gt}, \frac{hd}{\lambda}, \frac{l}{d}, \frac{s}{d} \mathbf{\hat{o}}_{\mathbf{\hat{e}}} \cdot \boldsymbol{\theta}_{0}, \qquad (10)$$

进一步写成:

$$\Delta T = \Theta \cdot C \cdot R. \tag{11}$$

其中, *Θ* 为温度系数,主要影响因素为环境温度; *C* 为尺度系数,在轨道板厚度一定时,主要影响因素为裂缝尺寸; *R* 为热力学系数。

综上公式可以看出,利用热成像技术检测轨道 板表面裂缝的检测效果主要受到裂缝尺寸系数和环 境温度影响,因此下文将对此进行仿真计算。

2 有限元仿真

2.1 轨道板模型建立

本文以路基段 CRTS II 型板式无砟轨道为基础,建立含表面裂缝的 CRTS II 型轨道板红外热成像检测模型。其中,轨道板、承轨台、CA 砂浆层和支

(a)承轨台与预裂缝结构(a) Rail platform and pre-crack structure

图 1

C. C. C.

承层均采用 Solid70 实体单元进行设定,各层之间采 用粘接处理保证连接^[13]。利用布尔运算对表面裂

缝进行设置,再将实际不规则裂缝简化为横截面为

矩形的规则裂缝,并对裂缝区域进行网格加密处理,

如图1所示,主要计算参数见表1。

(b)裂缝区域网格加密
 (c)检测模型整体示意图
 (b) Crack area mesh encryption
 (c) Overall schematic diagram of detection model
 CRTS II 型轨道板红外热成像检测三维模型

Fig. 1 Three-dimensional model of infrared thermal imaging detection of CRTS II track slab

表1 轨道板主要计算参数

Tab. 1 Main calculated parameters of slab track

	长度/mm	宽度/mm	高度/mm	比热容/ (J・kg ⁻¹ ・℃ ⁻¹)	密度/ (kg・m ⁻³)	导热系数/ (W・m ⁻¹ ・℃ ⁻¹)
轨道板	6 450	2 550	200	925	2 500	3.230
承轨台	300	150	70	925	2 500	3.230
CA 砂浆层	6 450	2 550	30	1 350	1 800	0.261
支承层	6 450	2 950	300	925	2 300	3.230

由于轨道板温度场受时间因素影响较大,需先 进行 30 min 短时程稳态热分析,并将结果定义为轨 道板结构初始温度场,模型侧面默认绝热^[14]。

2.2 模型验证

由于该检测模型本质上为传热模型,因此采用

轨道板不同深度处现场实测数据与仿真计算数据对 比的方式进行模型验证。根据钟垚等人^[15]的现场 监测结果,绘制天窗时间内轨道板内部 0 mm、50 mm、100 mm、150 mm 和 200 mm 不同深度处温度计 算值与实测值对比图如图 2 所示。

可以看出,在检修天窗时段内,实测值与计算值 在不同深度之间的整体差值较小,其中,在裂缝主要 出现的轨道板表面,两者的最大差值为 0.25 ℃;在 轨道板与砂浆层结合的 200 mm 深度处,最大差值 为 0.58 ℃,这是因为检测模型将实际三维导热过程 简化为一维导热以及轨道板和 CA 砂浆层之间的导 热差异所致。总体来说,实测值与计算值变化趋势 相同且误差范围合理,检测模型准确可靠。

135

2.3 计算工况选取

根据实际裂缝分布特征,统一将裂缝位置设置 在靠近承轨台侧边边缘处,并假设裂缝发展趋势为: 枕角处短裂缝在温度应力和列车荷载的反复作用 下,沿轨道板横向不断扩展延伸,直至发展为横向贯 通式裂缝,如图3所示。

图 3 裂缝位置及发展示意图

Fig. 3 Fracture location and development diagram

根据《高速铁路无砟轨道线路维修实施细则》^[16]和表面温差计算公式,分别设置裂缝长度工况为1轨道板宽度、1/4轨道板宽度、1/16轨道板宽度 度和 1/32轨道板宽度,约合 2 550 mm、640 mm、160 mm和 40 mm。设置裂缝宽度工况为 0.05 mm、0.1 mm、0.15 mm、0.2 mm、0.25 mm 和 0.3 mm。对于环境温度参数,统计检修天窗时间内环境温度数据,发现环境温度最大值为 28.3℃,最小值为-3.6 ℃, 且随季节呈现规律变化。因此,分别选取环境温度为-5 ℃、0 ℃、5 ℃、10 ℃、15 ℃、20 ℃、5 ℃ 10 ℃、15 ℃、20 ℃、25 ℃ 和 30 ℃进行仿真计算。

2.4 结果分析

2.4.1 裂缝长度因素分析

在 25 ℃环境温度下,对裂缝长度和裂缝宽度参数进行共计 24 种工况的有限元仿真计算,计算结果 见表 2。

表 2 不同工况下轨道板表面温差计算结果

 Tab. 2
 Calculation results of track plate surface temperature under different working conditions

裂缝长度/	裂缝宽度/mm						
mm	0.05	0.1	0.15	0.2	0.25	0.3	
40	0.064	0.075	0.100	0.110	0.135	0.149	
160	0.072	0.133	0.171	0.184	0.217	0.231	
640	0.098	0.164	0.192	0.230	0.249	0.279	
2 550	0.122	0.195	0.261	0.290	0.354	0.390	

由表2可以看出,随着裂缝长度的增加,轨道板 表面裂缝区域与非裂缝区域的温差也呈现出不断增 大的趋势。当裂缝长度为 40 mm 时,表面温差最大 值仅为0.149 ℃,数值相对较小,检测较为困难。这 是因为当裂缝长度过小时,裂缝内部仅存在少量空 气介质,在与轨道板的热传导过程中,两者交换的热 量微小,产生的温度差异也不明显,这也从侧面说明 了过小长度的裂缝对轨道板整体结构的影响微小. 不会影响到轨道板结构的安全稳定服役。当裂缝长 度增大到160 mm 时,轨道板表面裂缝区域与非裂 缝区域的温差出现明显上升,最大增幅达到77.3%, 这是因为随着长度的增加,空气介质与混凝土材料 的导热差异性逐步显现,裂缝区域的热量积聚效应 也不断增强。随着裂缝的不断劣化拓展,裂缝区域 与非裂缝区域的温差增长逐渐趋于缓和,平均增幅 为25%左右,检测的效果越来越好。

研究中,分别绘制 0.1 mm、0.2 mm 和 0.3 mm 宽 度的裂缝长度与表面温差关系图如图 4 所示,发现 裂缝长度与表面温差之间可用对数函数关系进行拟 合,拟合关系式分别为:

$$\begin{split} \Delta T &= 0.021 \ln \left(l - 31.904 \right) + 0.031 \, ; \\ \Delta T &= 0.037 \ln \left(l - 19.156 \right) + 0.002 \, ; \end{split} \tag{12}$$

 $\Delta T = 0.063 \ln(l + 28.016) - 0.115.$

可决系数分别为 0.999 83、0.997 24 和 0.980 43,相关程度较高。

0.2 mm 宽度条件下,4 种不同长度裂缝局部仿 真图如图 5 所示。可以看出,裂缝区域与非裂缝区 域存在明显的温度差异,且随着裂缝长度的增加,裂 缝边缘温度不断升高,热量不断向非裂缝区域扩散。 同时发现,受承轨台热传导的影响,在靠近承轨台一 侧,温差带表现为不均匀波动状态,而远离承轨台一 侧则较为均匀。

2.4.2 裂缝宽度因素分析

作为工务部门评价裂缝病害伤损等级的重要指 标,由计算结果可知,随着裂缝宽度的增大,轨道板 表面裂缝区域与非裂缝区域的温差也不断增大,这 是因为随着裂缝宽度的增加,裂缝内部空气介质与 两侧边轨道板之间的热传导过程时间更长,热量交 换也更充分,两者的温度差异也能够得到更加明显 的表现。当裂缝宽度在 0.1 mm 以下时,可实现对长 度较长裂缝的检测,对于短裂缝的检测则较为困难。 当裂缝宽度达到 0.2 mm 时,计算所得表面温差最小 值为0.11 ℃,已经满足检测要求,因此无论是40 mm 长的短裂缝、还是贯穿式的长裂缝,利用红外热成像 技术都能够实现较为有效的检测,且检测的效果越 来越好。进一步分析发现,随着宽度的不断增大,表 面温差的增长幅度逐渐降低,以贯穿式裂缝为例,当 裂缝宽度由 0.1 mm 变为 0.2 mm 时,表面温差变化 幅度为48.7%;而当裂缝宽度由0.2 mm 变为0.3 mm 时,表面温差变化幅度为34.5%,同比下降了 14.2%

研究后得到的裂缝宽度与表面温差关系如图 6 所示。由图 6 可知,当裂缝长度为 40 mm 时,裂缝 宽度的增加对于表面温差的影响较小,表面温差的 变化趋势缓和,整体温升并不明显,这也是因为当裂 缝较小时,裂缝内部的空气介质与轨道板之间传导的热量微小,温度效应较低。利用一次函数对裂缝 宽度与表面温差之间关系进行拟合,拟合关系式分 别为:

$$\Delta T = 0.351w + 0.044;$$

$$\Delta T = 0.606w + 0.062;$$

$$\Delta T = 0.685w + 0.082;$$

$$\Delta T = 1.054w + 0.084;$$

(13)

可决系数分别为 0.988 6、0.94、0.963 4 和 0.984 4。

图 6 裂缝宽度与表面温差关系图

Fig. 6 Relation diagram of crack width and surface temperature difference

2.4.3 环境温度因素分析

在不同温度条件下,分别对 0.1 mm、0.2 mm 和 0.3 mm 三种裂缝宽度工况和 160 mm、640 mm 和 2 550 mm三种裂缝长度工况进行模拟检测计算,计算结果见表 3。

可以看出,随着环境温度的不断升高,轨道板表 面裂缝区域与非裂缝区域的表面温差呈现出不断增 大的趋势,且裂缝的尺寸越大,温升表现得越明显。 当环境温度小于10℃时,裂缝尺寸对表面温差的影 响相对较小,最大表面温差仅为0.115 ℃,且上升幅 度平缓,整体温升较低,能够实现的检测效果也较 差.这是因为一方面当环境温度较低时,原子自身的 运动速度减慢,轨道板与裂缝空气之间的热传导速 率缓慢:另一方面,在较低的环境温度下,轨道板与 裂缝空气之间的温度差异相对较小,热交换总量也 相对较小,从而导致温度效应变差。当环境温度由 10℃增加到15℃时,发现各尺寸条件下表面温差 均出现大幅增加的情况,且裂缝的尺寸越小,该变化 就越明显。其中,最大增长幅度为123%、最小增长 幅度为 34.8%, 分别出现在 160 mm 长的 0.3 mm 裂 缝和贯穿式的0.1 mm 裂缝,原因可能是由于混凝土 材料导热性能较差,当环境温度升高时,混凝土内部 热量传导慢而少,当热量传递至裂缝区域时,由于裂 缝内部空气介质的隔热作用,两者之间热量传递速 率进一步减缓,热量在裂缝区域产生堆积,而由于总 热量较小,因此裂缝尺寸越小,堆积效应产生的温差 变化就越明显。在该温度条件下,已经可以实现绝 大多数裂缝的检测,但对于尺寸较小如 40 mm 长的 0.1 mm 裂缝检测仍存在一定的困难。当环境温度 变化为 20 ℃时,各工况条件下的表面温差均超过了 0.1 ℃,基本达到了完全检测的要求,此后,随着环 境温度的不断走高,轨道板表面裂缝区域与非裂缝 区域的温差开始呈现出类似于线性增长的趋势,此 时裂缝的尺寸越大,表面温差就越大,在 30 ℃时,温 差最大值已经达到了 0.45 ℃,检测效果越来越好。

表 3 不同环境温度工况下轨道板表面温差计算结果

Tab. 3 Results of track plate surface temperature under different environmental temperature

环境	裂缝	裂缝宽度/mm				
温度/℃	· 长度/mm	0.1	0.2	0.3		
-5	160	0.021	0.026	0.030		
	640	0.043	0.047	0.051		
	2 550	0.065	0.070	0.080		
0	160	0.029	0.038	0.046		
	640	0.049	0.050	0.054		
	2 550	0.070	0.072	0.090		
5	160	0.042	0.055	0.059		
	640	0.052	0.061	0.067		
	2 550	0.080	0.090	0.107		
10	160	0.046	0.056	0.064		
	640	0.058	0.065	0.077		
	2 550	0.095	0.099	0.115		
15	160	0.085	0.101	0.143		
	640	0.103	0.119	0.145		
	2 550	0.130	0.165	0.195		
20	160	0.109	0.130	0.181		
	640	0.116	0.158	0.212		
	2 550	0.150	0.235	0.270		
25	160	0.133	0.184	0.231		
	640	0.164	0.230	0.279		
	2 550	0.195	0.290	0.390		
30	160	0.174	0.264	0.308		
	640	0.202	0.286	0.367		
	2 550	0.225	0.345	0.450		

3 结束语

(1)利用红外热成像技术可以实现对轨道板表面裂缝的夜间检测,环境温度越高、裂缝的宽度和长度尺寸越大,检测的效果越好。

(2)裂缝长度因素和裂缝宽度因素及轨道板表面裂缝区域及非裂缝区域的表面温差分别满足对数函数拟合关系和一次函数拟合关系。

(3)当环境温度低于 10 ℃时,几乎不能实现对 裂缝的有效检测,随着环境温度的升高,能够检测的 裂缝工况越来越多,检测效果也越来越好。在 25 ℃ 条件下,可以实现对宽度大于 0.1 mm,长度大于 16 cm裂缝的有效检测。

参考文献

- [1] 王涛,王鑫,吴绍利,等. 我国板式无砟轨道的维修与部件更换 研究[J]. 铁道建筑,2014,54(11):157.
- [2]王玉泽,王森荣. 高速铁路无砟轨道监测技术[J]. 铁道标准设计,2015,59(8):1.
- [3] 朱永见,赵国堂. CRTS II 型轨道板裂缝宽度的变化规律[J]. 西 南交通大学学报,2019,54(2):351.
- [4] 王平,徐浩,陈嵘,等. 路基上 CRTS II 型板式轨道裂纹影响分析
 [J]. 西南交通大学学报,2012,47(6):929.
- [5]钟鹏飞,车爱兰,冯少孔,等.高速铁路线下结构典型病害分析 及快速无损检测方法研究[J].振动与冲击,2017,36(11):154.
- [6] 徐胜林,宋显辉. 混凝土损伤的红外热像检测[J]. 实验室研究 与探索,2007,26(11):289.
- [7] TITMAN D J. Applications of thermography in non-destructive testing of structures [J]. NDT & E International, 2001, 34(2): 149.
- [8] MIAN A, HAN Xiaoyan, ISLAM S, et al. Fatigue damage detection in graphite/epoxy composites using sonic infrared imaging technique [J]. Composites Science And Technology, 2004,64(5):657.
- [9] 林隆荣,钟舜聪,伏喜斌,等. 复合材料缺陷的脉冲热成像有限 元模拟研究[J]. 机电工程,2016,33(1):18.
- [10] 郭伟,董丽虹,徐滨士,等. 主动红外热像无损检测技术的研究 现状与进展[J]. 无损检测,2016,38(4):58.
- [11]刘付山,曾志平,吴斌,等.高速铁路连续式无砟轨道温度场分析[J].铁道学报,2016,38(12):86.
- [12]欧祖敏,孙璐,程群群.高速铁路无砟轨道温度场简化计算方法[J].浙江大学学报(工学版),2015,49(3):482.
- [13] 毕澜潇,向芬,丁晨旭,等.双块式无砟轨道温度场有限元模拟[J].铁道建筑,2016(5):34.
- [14] 孟庆峰,李立增,时雪梅. 悬臂施工的预应力箱梁温度场分析 [J]. 铁道建筑,2010(7):14.
- [15]钟垚,何越磊,路宏遥,等. 持续高温作用下 CRTS Ⅱ型无砟轨 道层间离缝分析[J]. 铁道科学与工程学报,2018,15(5):1128.
- [16]铁运[2012]83 号. 高速铁路无砟轨道线路维修规则(试行) [S]. 北京:中国铁道出版社,2012.