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Research on efficient approximate nearest neighbor search
based on Locality—Sensitive Hashing
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Abstract: Locality - Sensitive Hashing (LSH) is an effective randomized technique and widely used in many machine learning
tasks. The cost of hashing is proportional to data dimensions, and thus the performance bottleneck often occurs when dimensionality
is high and the number of hash functions involved is large. This paper designs a simple yet efficient LSH scheme, named FastLSH,
underl, norm. By combining random sampling and random projection, FastLSH reduces the time complexity from O(n) to O(m) (
m < n ), where nis the data dimensionality and m is the number of sampled dimensions. Moreover, FastLSH has provable LSH
property. The paper conducts comprehensive experiments over a collection of real and synthetic datasets for the nearest neighbor
search task. Experimental results demonstrate that FastLSH is on par with the state—of—the—arts in terms of answer quality, space
occupation and query efficiency, while enjoying up to 80x speedup in hash function evaluation.
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