
第 15 卷　 第 9 期

Vol. 15 No. 9

　
 　

智　 能　 计　 算　 机　 与　 应　 用

Intelligent

Computer

and

Applications
　

　 2025 年 9 月

　

Sep.

2025

　 　 　 　 　 　谭宗元,

王洪亚.

基于位置敏感哈希的高效近似最近邻检索研究[J] .

智能计算机与应用,2025,15(9):19- 25.

DOI:10.
20169 / j. issn. 2095-2163. 25041806

基于位置敏感哈希的高效近似最近邻检索研究

谭宗元,

王洪亚

(东华大学

计算机科学与技术学院,

上海

201620)

摘　 要:

位置敏感哈希(Locality-Sensitive

Hashing,LSH)是一种有效的随机化技术,广泛应用于众多机器学习任务中。 然而,
哈希计算的开销与数据维度成正比,因此在高维数据和使用大量哈希函数的场景下,往往成为性能瓶颈。 本文在 l2 范数下设

计了一种简单而高效的

LSH

方法,称为

FastLSH。 该方法通过结合随机采样与随机投影,将哈希时间复杂度从 O(n) 降低至

O(m) (其中 n 为数据维度, m < n 为采样维度数)。 更重要的是,FastLSH

保留了可证明的

LSH

性质。 论文在多个真实和合

成数据集上进行了针对最近邻搜索任务的全面实验。 实验结果表明,FastLSH

在查询质量、空间开销和查询效率等方面与当

前先进方法表现相当,同时在哈希函数计算上可实现最高达

80

倍的加速。
关键词:

位置敏感哈希;

机器学习;

随机采样;

LSH

性质

中图分类号:

TP399 文献标志码:

A 文章编号:

2095-2163(2025)09-0019-07

Research

on

efficient

approximate

nearest

neighbor

search

based

on

Locality-Sensitive

Hashing
TAN

Zongyuan,

WANG

Hongya

(School

of

Computer

Science

and

Technology,

Donghua

University,

Shanghai

201620,

China)

Abstract:

Locality-Sensitive

Hashing

(LSH)

is

an

effective

randomized

technique

and

widely

used

in

many

machine

learning

tasks.

The

cost

of

hashing

is

proportional

to

data

dimensions,

and

thus

the

performance

bottleneck

often

occurs

when

dimensionality

is

high

and

the

number

of

hash

functions

involved

is

large.

This

paper

designs

a

simple

yet

efficient

LSH

scheme,

named

FastLSH,

under

l2
 norm.

By

combining

random

sampling

and

random

projection,

FastLSH

reduces

the

time

complexity

from

O(n) to

O(m)

(
m < n),

where

n

is

the

data

dimensionality

and

m

is

the

number

of

sampled

dimensions.

Moreover,

FastLSH

has

provable

LSH

property.

The

paper

conducts

comprehensive

experiments

over

a

collection

of

real

and

synthetic

datasets

for

the

nearest

neighbor

search

task.

Experimental

results

demonstrate

that

FastLSH

is

on

par

with

the

state-of-the-arts

in

terms

of

answer

quality,

space

occupation

and

query

efficiency,

while

enjoying

up

to

80×

speedup

in

hash

function

evaluation.

Key

words:

Locality-Sensitive

Hashing;

machine

learning;

random

sampling;

LSH

property

�哈尔滨工业大学主办 学术研究与应用

作者简介:

谭宗元(1990—),男,博士研究生,主要研究方向:近似最近邻搜索。

Email:1041689460@ qq. com;

王洪亚(1976—),男,教授,主要

研究方向:近似最近邻搜索。

收稿日期:

2025-04-18

0　 引　 言

最近邻(NN)检索是机器学习中的一个重要问

题,其在人脸识别、信息检索和重复检测等领域有着

广泛的应用。 最近邻检索的目的是在数据集 D =
{v1,v2,…,vN} 中找到与给定查询 u 最相似的数据

对象(或具有最小距离)。 对于低维空间 (n < 10),
流行的基于树的索引结构如 KD-树[1] 、SR-树[2] 等

提供精确的解并提供令人满意的查询性能。 然而,
对于高维空间,基于树的索引结构遭受众所周知的

维数诅咒,也就是说,得到的查询性能甚至比线性扫

描更差[3] 。 为了解决这个问题,一种可行的方法是

通过以准确性换取效率来提供近似结果[4] 。
位置敏感哈希(LSH)是解决高维空间中近似最

近邻(ANN) 检索问题的一种有效的随机化技术。
LSH 的基本思想是使用随机哈希函数将高维数据对

象映射到低维空间的桶中,通过这种方法,相似对象

映射到相同桶的概率比不相似对象的高。 针对 l2 范

数的 LSH 机制(E2LSH)最初由文献[6]基于 p -稳定

分布提出。 由于其亚线性查询时间复杂度和对查询

结果的理论保证,E2LSH 可谓是理论和实践中最流行

的 ANN 检索算法之一,并且前人已经提出了许多变

体来实现更好的空间占用和查询响应时间[8-17] 。
除了用于 ANN 检索外,LSH 还可以用在许多其

他机器学习任务中[18-21] 。 这些 LSH 应用都涉及在

整个数据集上计算 LSH 函数。 以广泛使用的

E2LSH 为例,计算向量 v 的 k 个哈希值需要 O(nk)
次计算,其中 n 为 v 的维数, k 为 LSH 函数的个数。
对于典型的 ANN 检索任务, k 的取值往往在几百到

几千之间,并且随着数据集的基数 (N) 不断增长,
因为 E2LSH 所需的哈希数是 O(Nρ) [6] 。 因此,在
几乎所有基于 LSH 的应用中,哈希是主要的计算和

资源瓶颈,尤其当数据以流方式出现和 / 或 LSH 数

据结构必须重复构建时[16,

22] 。
本文开发一种简单而高效的 LSH 方案(FastLSH),

只需要随机采样和随机投影两个基本操作,并且具

有比 E2LSH 更好的时间复杂度。 此外,文中还推导

FastLSH 的碰撞概率表达式, 并证明 FastLSH 与

E2LSH 渐近等价,这意味着本文提出的方案具有理

想的 LSH 性质。 为了进一步验证本文的方案性能,
对最近邻搜索任务进行全面的实验,其中标准 LSH
由 FastLSH 所替代。 实验结果表明,基于 FastLSH
的算法在查询精度和查询效率方面与业界领先的算

法相当,同时在索引构建时间方面提供明显的端到

端加速。

1　 预备知识

令 D 表示欧式空间 ℝ n 中大小为 N 的数据集,
v ∈ D 表示数据向量和 u ∈ ℝ n 表示查询向量。 文

中令 ϕ(x) = 1 / 2π exp(- x2 / 2) 和 Φ(x) =

∫x

-∞
1 / 2π exp(- x2 / 2)dx 分别表示标准正态分布

N(0,1) 的 概 率 密 度 函 数 (Probability

Density

Function, PDF) 和 累 积 分 布 函 数 (Cumulative

Distribution

Function,CDF)。
1. 1　 位置敏感哈希

位置敏感哈希(Locality

Sensitive

Hashing,LSH)
是解决近似近邻检索问题的有效方法。 在介绍 LSH
之前,首先对近似近邻(Approximate

Near

Neighbor,
ANN)检索问题进行定义,其通常采用的形式如下:

定义 1　 (c,R)-NN 检索问题　 给定 n 维欧式

空间 ℝ n 的数据集 D 和参数 R > 0, δ > 0,(c,R) -
NN 检索问题是构建一个数据结构使得对于任意的

查询 u 以概率 1 - δ 确保如果存在 D 中一个 u 的 R
近邻对象,那么在 D 中返回一些 u 的 cR 近邻对象。

在定义 1 中, u 的 R - 近邻对象为 v 使得

‖v - u‖2 ≤ R。 针对 (c,R) - NN 检索问题,现流

行的方法往往基于位置敏感哈希(LSH),这是一组

函数,具有良好的特性,即在这些函数的域内,相似

度(欧式距离近)高的对象比相似度低的对象在范

围空间中碰撞的概率更高。 形式化地,考虑 LSH 函

数族 H 映射 ℝ n 到域 U。
定义 2　 位置敏感哈希(LSH)

　 一个 LSH 函

数族 H = {h:ℝ n → U} 称为 (R,cR,p1,p2) - 敏感

的,如果对于任意对象 u,

v ∈ ℝ n,
(1)

假设 ‖v - u‖2 ≤ R, 那么 PrH[h(v) =
h(u)] ≥ p1;

(2)

假设 ‖v - u‖2 ≥ cR, 那么 PrH[h(v) =
h(u)] ≤ p2;

为了使得 LSH 函数族有用,必须满足 c > 1 以

及 p1 > p2。
1. 2　 针对 l2 范数的 LSH

文献[6]给出基于 p - 稳定分布的用于相似度

为 lp(p ∈ (0,2]) 范数的 LSH 族。 当 p = 2 时,产生

众所周知的 l2 范数 LSH 函数族(E2LSH)。 该 LSH
函数定义如下:

ha,b(v) =⌊ aTv + b
w

」 (1)

　 　 其中, ⌊·」 表示向下取整函数; a ∈ ℝ n 表示一

个 n 维的随机投影向量,其每一维的数值独立生成

于标准正态分布 N(0,1);b 表示一个实数、均匀地

产生于区间 [0,w], 这里桶宽 w 是一个重要的参

数,用于调节 E2LSH 的性能。
对于 E2LSH,在 LSH 函数 ha,b(·) 下任意数据

对 (v,u) 的碰撞概率计算如下:

p(s) = Pr[ha,b(v) = ha,b(u)] =∫w

0
f | sX| (t)(1 - t

w
)dt

(2)
　 　 其中 s =‖v - u‖2 表示数据对 (v,u) 的欧式

距离; f | sX| (t) 表示正态分布 sX 绝对值的 PDF,这里

X 是服从 N(0,1) 的随机变量。 给定桶宽 w ,碰撞

概率 p(s) 是关于 s 的单调递减函数,这意味着函数

ha,b(·) 满足 LSH 特性。
1. 3　 截断的正态分布

如果由于物理原因,需要使用正态分布来描述

某一变量的随机变化,但该变量的取值必须严格限

制在某一截断区间内、而非 (- ∞ , + ∞), 则推荐使

用截断正态分布 (Truncated

Normal

Distribution)。
截断正态分布是通过对正态随机变量的取值进行下

限、上限或双侧限制而得到的概率分布。 设截断区

02 智　 能　 计　 算　 机　 与　 应　 用　 　 　 　 　

　

　 　

　

　 　 　 　 　 第 15 卷　

间为 (a1,a2), 则其概率密度函数可表示为:
ψ(x;μ,σ 2,a1,a2) =
0,　 　 　 　 　 　 　 　 　 　 　 　 　 x ≤ a1

ϕ(x;μ,σ 2)
Φ(a2;μ,σ 2) - Φ(a1;μ,σ 2)

,

　 a1 < x < a2

0,　 　 　 　 　 　 　 　 　

　 　 　 　 x ≥ a2

ì

î

í

ï
ïï

ï
ïï

(3)

相应地 CDF 定义如下:
Ψ(x;μ,σ 2,a1,a2) =
0,　 　 　 　 　 　 　 　

　 　

　

　

x ≤

a1

Φ(x;μ,σ 2) - Φ(a1;μ,σ 2)
Φ(a2;μ,σ 2) - Φ(a1;μ,σ 2)

,　

a1 < x < a2

1,

　 　 　 　 　 　 　

　 　

　

　 　 x ≥ a2

ì

î

í

ï
ïï

ï
ïï

(4)

2　 高效的 LSH 函数及 ANN 检索

2. 1　 高效的 LSH 函数族

本文提出一种新颖的 LSH 函数族, 命名为

FastLSH。 通过 FastLSH 计算哈希值涉及 2 个简单

的步骤,即随机采样和随机投影。
(1)随机采样:在随机采样阶段,首先从 n 个维

度中进行随机采样,这里从整数集 {1,2,…,n} 中

随机采样 m 个样本构成多集 S。 对于每个向量 v =
{v1,v2,…,vn}, 如果 i ∈ S, 那么将所有的 vi 连接成

一个 m 维的向量 v~ = { v~ 1,v~ 2,…,v~ m}。 现用一个简

单例子展示如何生成 v~ , 假设有一个 5 维的向量 v =
{1,3,5,7,9} 以及多集 S = {2,4,2}, 那么通过 S 得

到一个 3 维的向量 v~ = {3,7,3}。 从这里可以看到

v 中每个元素被选中的概率均为 m / n。 接下来,继
续重复使用符号 S并用 S(·) 表示采样算子,那么对

于每个向量 v ∈ ℝ n, 可以得到 v~ ∈ ℝ m = S(v), 这

里 m < n。
(2)随机投影:在随机投影阶段,投影值的计算

与式(1)相同,区别在于式(1)使用向量 v ∈ ℝ n、 而

这里使用 v~ ∈ ℝ m, 那么整体的哈希函数形式化定

义如下:

h
a~ ,

b
~(v) =⌊ a~ TS(v) + b

~

w~
」 (5)

　 　 其中, a~ ∈ ℝ m 表示随机投影向量,其每个元素

均从 N(0,1) 中独立生成; w~ 表示用户预先指定的

常量; b
~
表示从区间 [0,w~] 均匀生成的一个实数。

该哈希函数 h
a~ ,

b
~(v) 通过 a~ 映射一个 n 维的向量 v

到整数集。 与 E2LSH 相比,FastLSH 将哈希的时间

复杂度从 O(n) 降到 O(m)。

2. 2　 FastLSH 用于 ANN 检索

鉴于其方法简单,FastLSH

可以轻松嵌入到任

何现有的

LSH

应用中。 这里将简要讨论如何将

FastLSH

应用于 ANN 检索任务。 对于 ANN 检索,其
标准 LSH 索引结构(E2LSH)构建如下:首先使用 k
个独立的 LSH 函数计算哈希码 H(v) = (h1(v),
h2(v),…,hk(v)), 这里 H(v) 表示 k个 LSH 码的串

联;然后建立一个哈希表将二元组 (H(v),ID(v))
添加到相应的桶中,这里 ID(v) 表示 v 在数据库 D
的 ID。 为了提高精度,从 LSH 族中独立均匀且随

机产生 L 组哈希函数 Hi(·)(i ∈ {1,2,…,L}) 得到

L 个哈希表。 在这样的 ANN 检索框架中使用

FastLSH,仅仅将式(1) 定义的 LSH 函数替换为式

(5)的 LSH 函数。
当来临查询 u, 先要计算 {H1(u),H2 (u),…,

HL(u)}, 然后检索所有 L 个桶以获得 u 的候选集。
事实上,存在 2 种方法对这些候选对象进行处理,即
近似的和精确的方法。 对于近似的方法,这里只评

估候选集中不超过 3L 个对象。 LSH 理论确保以恒

定的概率返回 (c,R) - NN 对象。 但在实际中,往往

广泛使用精确的方法,原因在于该方法以评估候选

集中所有对象为代价提供更高的查询精度。 在精确

的方法中,检索时间包含哈希时间与检测候选集所

需的时间。

3　 理论分析

3. 1　 碰撞概率的计算

给定的向量对 (v,u), 令 s =‖v - u‖2。 对于

n 个元素 (vi - ui) 2{ i = 1,2,…,n} 的集合,且均值

和方差分别为 μ = (∑
n

i = 1
(vi - ui) 2) / n 和 σ 2 =

(∑
n

i = 1
((vi - ui) 2 - μ)

2
) / n。 在执行大小为 m 随机

采样算子 S(·) 后,向量 v 和 u 分别变换为 v~ = S(v)
和 u~ = S(u), 那么变换之后的向量对 (v~ ,

u~) 的平

方距离为:

s~ 2 = ∑
m

i = 1
(v~ i - u~ i) 2 (6)

　 　 通过中心极限定理,可得以下的引理:
引理 1　 如果采样的数量 m 足够大,那么 m 个

独立同分布的随机样本 (v~ i - u~ i) 2

{ i = 1,2,…,m}

的和 s~ 2 渐近收敛于均值为 mμ、 方差为 mσ 2 的正态

分布,即 s~ 2 ~ N(mμ,mσ 2)。
回顾下 a~ ∈ ℝ m 表示随机投影向量,其每个元

12第 9 期 谭宗元,

等:

基于位置敏感哈希的高效近似最近邻检索研究

素均从 N(0,1) 中独立生成。 通过 2-稳定分布,对
于任意 2 个向量 v 和 u, 向量之间投影差值 (aTv -
aTu) 服从分布为 ‖v - u‖2X, 即 sX, 这里 X ~
N(0,1)。 值得注意的是, 如式 (2) 所示, sX 的

PDF,即 fsX(x) = 1 / s·ϕ(x / s), 在计算碰撞概率中是

个重要的因素。 因此,如果已知 s~X 的 PDF,那么在

本节提出的 LSH 函数 h
a~ , b

~(·) 下,将很容易推导向

量对 (v,u) 的碰撞概率。 令 f | s~ X| (t) 表示 s~X 绝对

值的 PDF,通过代替式(2)中的 f | sX| (t), 就可获得

FastLSH 的碰撞概率 p(s,σ), 如定理所示。
定理 1　 在哈希函数 h

a~ ,

b
~(·) 下,任意两点发

生碰撞的概率为:
p(s,σ) = Pr[h

a~ ,

b
~(v) = h

a~ ,

b
~(u)] =

　 　 　 ∫w~

0
f | s~ X| (t)(1 - t

w~
)dt (7)

接下来将讨论如何得到 f | sX| (x)。 值得注意的

是,因为 s~ 2 ≥ 0, 随机变量 s~ 2 并不确切服从正态分

布,然而正态分布定义域为 (- ∞ , + ∞)。 保留正

态分布主要特征同时避免负值的数学上站得住的方

法涉及截断正态分布,其中定义域为区间的一端或

两端。 特别地,通过界定定义域范围为 [0, + ∞),
s~ 2 可以使用正态分布 s~ 2 ~ N(mμ,mσ 2) 得到,即单

边的截断正态分布,表示为 ψ(x;μ~ ,σ~ 2,0, + ∞)。
由于 s~ ≥ 0, 对于任意常数 t > 0, 有 Pr[s~ < t] =
Pr[s~ 2 < t2], 因此 s~ 的 CDF,表示为 F s~ , 可以计算

如下:
F s~

= Pr[s~ < t] = Pr[s~ 2 < t2] =

∫t2

0
ψ(x;μ~ ,σ~ 2,0, + ∞)dx (8)

这里, μ~ = mμ,σ~ 2 = mσ 2。 由于 PDF 是 CDF 的

导数,为此 s~ 的 PDF,表示为 f s~ , 可以由以下公式

得到:

f s~(t) = d
dt

[F s~(t)] = 2tψ(t2;μ~ ,σ~ 2,0, + ∞) (9)

虽然已知 s~ 和 X 的分布函数,但是直接计算两

者的乘积 s~X 并不容易。 然而以下引理给出随机变

量W = XY 的特征函数,其中 X 和 Y 是 2 个独立的随

机变量,一个服从标准正态分布 N(0,1), 另外一个

服从均值为 μ、 方差为 σ 2 的分布。
引理 2　 2 个独立的随机变量的乘积的特征函

数为:

φW(x) = EY{exp(- x2Y2

2
)}

　 　 其中, x 表示标准的正态随机变量, Y 表示均值

为 μ、方差为 σ 2 的独立随机变量。
由于 X 服从标准的正态分布,因此可以通过引

理 2 得到 s~X 的特征函数。
引理 3　 s~X 的特征函数表示为:

φ s~ X(x) = 1

2(1 - Φ(
- μ~

σ~
))

exp(1
8
x4σ~ 2 -

　 　 1
2
μ~ x2)erfc(

1
2
x2σ~ 2 - μ~

2σ~
)　 - ∞ < x < + ∞

其中, erfc(t) = 2
π
∫+∞

t
exp(- x2)dx(- ∞ < t <

+ ∞) 表示补余误差函数。
根据引理 3 得到特征函数,那么 s~X 的 PDF,表

示为 f s~ X(t), 可以通过逆傅里叶变换得到,其计算

如下所示:

f s~ X(t) = 1
2π∫+∞

-∞
exp(- itx)φ s~ X(x)dx (10)

其中,符号 i = - 1 表示虚数单元。
3. 2　 FastLSH 的渐近行为

根据式(7)可以看到,任意 2 个向量 v 和 u 在

FastLSH 下发生碰撞的概率 p(s,σ) 取决于距离 s和
标准差 σ。 从这个角度来看, FastLSH 可以视为

E2LSH 的一般版本,其增加了一个额外的影响因

子,即向量对 (v,u) 每个维度距离平方的变化,使
得证明 FastLSH 的性质变得更加困难。 尽管如此,
接下来给出 FastLSH 渐近等价于 E2LSH。

通过式 (2) 和式 (7), 可以看到 E2LSH 和

FastLSH 碰撞概率的表达式及其相似。 事实上,如
果 f s~ X(t) 服从正态分布 N(0,ms2 / n), 那么根据以

下的事实,通过调节桶宽为 w~ = mw / n, 总能得到

pw(s) = p w~(s,σ)。
依据事实是:对于 E2LSH, fsX(t) 服从正态分布

N(0,s2) 且在桶宽 w 下的碰撞概率 p(s) 等于在桶

宽 αw 下的碰撞概率 p(αs), 即 p(s) = p(αs), 这里

α > 0。 直接证明 f s~ X(t) 与 N(0,ms2 / n) 等价并不

是容易,为此间接比较两者之间的特征函数。 以下

的定理给出 s~X 特征函数的渐近行为。
定理 2　 当 m➝ +∞ 时, s~X 的特征函数与 N(0,

ms2 / n) 渐近等价,即:

lim
m→+∞

φ s~ X(x)

exp(- ms2x2

2n
)
= 1 (11)

22 智　 能　 计　 算　 机　 与　 应　 用　 　 　 　 　

　

　 　

　

　 　 　 　 　 第 15 卷　

　 　 其中, exp(- ms2x2 / 2n) 表示正态分布 N(0,
ms2 / n) 的特征函数。

值得注意的是, exp(- ms2x2 / 2n) 表示正态分

布 N(0,ms2 / n) 的特征函数。 因此,定理 2 意味着

f s~ X(t) 渐近等价于 N(0,ms2 / n) ,这是因为概率分

布由其特征函数唯一确定,为此可得以下的推论。
推论 1 　 m →+ ∞ ,f s~ X(t) 渐近等价于 N(0,

ms2 / n) 的 PDF,即 f s~ X(t) ~ fsX(t)。

通过推论 1 以及前述事实,如果 w~ = mw / n, 那

么碰撞概率渐近相等,即 p(s) = p(s,σ), 在该情况

下, 意味着标准差 σ 并不影响碰撞概率, 使得

FastLSH 等价于 E2LSH。

4　 实验结果

(1)数据集:本节使用不同类型的 11 个公开的

高维真实数据集和 1 个合成的数据[23] 进行实验,且
每个数据集的查询个数均为 200,

见表 1。 Sun
(http: / / groups. csail. mit. edu / vision / SUN /) 数据集

包含大约 8 万个 512 维的 GIST 特征的图像。 Cifar
(http:/ / www. cs. toronto. edu /

kriz / cifar. html)数据集

是从 TinyImage 中提取的 5 万个 512 维 GIST 特征向量

的集合。 Audio (http:/ / www. cs. princeton. edu / cass /
audio. tar. gz)是 192 维的数据集,由来自 DARPA

TIMIT
音频速度数据集的约 5 万个音频特征向量组成。 Trevi
(http: / / phototour. cs. washington. edu / patches /
default. htm)数据集包含大约 10 万张位图图像,且
每张 图 像 表 示 为 4

096 维 的 特 征 向 量。 Notre
(http: / / phototour. cs. washington. edu / datasets /) 数

据集包含一组 Flickr 图像以及重建的大约 30 万个

128 维的特征。 Sift(http: / / corpus-texmex. irisa. fr)
数据集分别包含 1 百万个 128 维的 SIFT 向量。
GIST(https: / / github. com / aaalgo / kgraph) 数据集包

含 1 百万个 960 维度的 GIST 特征向量。 Deep
(https: / / yadi. sk / d / I

yaFVqchJmoc)数据集包含 256
维的 1 百万个数据对象,每个对象是由卷积神经网

络激 活 后 获 得 的 自 然 图 像 的 深 度 神 经 编 码。
Ukbench(http: / / vis. uky. edu / stewe / ukbench /)数据

集包含大约 1 百万个 128 维特征的图像。 Glove
(http: / / nlp. stanford. edu / projects / glove /)数据集包

含大约 1. 2 百万个从 Tweets 提取的图像。 ImageNet
(http: / / cloudcv. org / objdetect /) 数据集包含大约

2. 4 百万个数据对象组成的 150 维密集 SIFT 特征。
Random 数据集包括 1 百万个从单位超球随机选择

100 维向量。

表 1　 12 个真实数据集的统计信息

Table

1　 Statistics

of

12

real

datasets

Datasets #

of

Points #

of

Queries Dimension

Sun 79

106 200 512

Cifar 50

000 200 512

Audio 53

387 200 192

Trevi 9

990 200 4

096

Notre 332

668 200 128

Sift 1

000

000 200 128

Gist 1

000

000 200 960

Deep 1

000

000 200 256

Ukbench 1

097

907 200 128

Glove 1

192

514 200 100

ImageNet 2

340

373 200 150

Random 1

000

000 200 100

　 　 (2)基准方法:文中将

FastLSH

与 2 种常见的

LSH

算 法 进 行 对 比 实 验, 分 别 是

E2LSH[6] 和

ACHash[24] 。

其中, E2LSH

是一种经典的基础型

LSH

方法,能够在保持近似最近邻检索效果的同

时,实现子线性的查询时间。 ACHash

则通过引入

Hadamard

变换和稀疏随机投影,有效提升了哈希函

数的计算效率。
(3)评估指标:这里使用召回率(Recall)、平均查

询时间(Average

Query

Time)、哈希代价(Hashing

Cost)
以及索引代价(Indexing

Cost)这 4 个常用的标准作为

评估指标以评估 E2LSH、FastLSH 和 ACHash 的性能,
其中哈希代价表示评估一个哈希函数所需的时间消

耗,而索引代价表示算法除检索外的端到端时间开销。
(4)参数设置:在相同数据集和目标召回率的

设定下,为保证实验的公平性,对 3 种算法采用相同

的参数配置: k 表示每个哈希表中的哈希函数数量,
L 表示哈希表的数量。 由此,3 种算法在空间占用方

面保持一致。 在所有实验中,FastLSH

的参数 m 固

定为

30。 为获得最佳性能,ACHash

的采样比例采

用默认值

0. 25。 研究在所有数据集上报告 3 种算

法的

R10@ 10

指标结果。
(5)实验结果与讨论:在 E2LSH 算法框架内,本

节旨在证明 FastLSH 可以显著减少索引构建时间,同
时实现与其他基于 LSH 的算法几乎相同的查询精度

和查询时间。 值得注意的是,FastLSH 的目的并非降

低查询时间,因为查询处理中的时间开销主要由查询

及其候选对象之间距离的精确评估所决定。 在查询

阶段,FastLSH、ACHash 与 E2LSH 同样需要计算查询

32第 9 期 谭宗元,

等:

基于位置敏感哈希的高效近似最近邻检索研究

与其候选对象的欧式距离以确定 ANN 检索结果,如
果检测的候选对象越多,所需的时间开销则越大。 下

面给出 3 个算法的性能对比结果。
这里比较 E2LSH、ACHash 和 FastLSH 在 0. 9 目

标精度时的性能。 图 1 给出了精度、平均查询时间、
LSH 计算时间和索引构建时间的结果。 从图 1 中

(a)、(b)、(e)和(f)中可以看到,FastLSH 和 E2LSH
实现基本相当的查询性能和查询响应时间。 另外对

于不同的数据集,精度和查询响应时间均做多次取

平均并绘画误差棒,在对应的柱状图顶部展示。 由

于所获得的精度相差较小,误差棒需要放大才能显

示清晰,说明 3 种算法均得到稳定的查询性能;然而

对于 ACHash,查询响应时间的误差棒波动较大,意
味着其查询效率稳定性较差。 主要原因在于

ACHash 缺乏理论上的保证,在大多数情况下,其查

询效率略低于 FastLSH 和 E2LSH。

1.0

0.5

0

Im
age

Tre
vi

De
ep

Ra
ndGl

ove
Uk
be
n

R
ec
al
l

E2LSH
ACHash
FastLSH

（a）召回率

1.0

0.5

0

Gi
st Sif

t
Cif
ar Su

n
No
tre
Au
dio

R
ec
al
l

E2LSH
ACHash
FastLSH

（e）召回率

0.2

0.1

0

Im
age

Tre
vi

De
ep

Ra
ndGl

ove
Uk
be
n

E2LSH
ACHash
FastLSH

（b）查询时间

Ti
m
e/
s

0.04

0.02

0

E2LSH
ACHash
FastLSH

（f）查询时间

Ti
m
e/
s

Gi
st Sif

t
Cif
ar Su

n
No
tre
Au
dio

（g）哈希代价

Gi
st Sif

t
Cif
ar Su

n
No
tre
Au
dio

（h）索引时间

Gi
st Sif

t
Cif
ar Su

n
No
tre
Au
dio

30

20

10

0

30

20

10

0

LS
H
co
st
/s

LS
H
co
st
/s

E2LSH
ACHash
FastLSH

E2LSH
ACHash
FastLSH

600

400

200

0

Im
age

Tre
vi

De
ep

Ra
ndGl

ove
Uk
be
n

E2LSH
ACHash
FastLSH

（c）哈希代价

Gi
st Sif

t
Cif
ar Su

n
No
tre

Au
dio

E2LSH
ACHash
FastLSH

（d）索引时间

600

400

200

0

LS
H
co
st
/s

LS
H
co
st
/s

图 1　 召回率、平均查询时间、LSH 计算时间和索引构建时间的比较

Fig.

1　 Comparison

of

recall,

average

query

time,

LSH

calculation

time

and

index

cost

　 　 当涉及到 LSH 计算和索引开销时, E2LSH、
ACHash 和 FastLSH 的性能相差很大,如图 1 中(c)、
(d)、(g)和(h)所示。 从图 1(c)和图 1(g)中发现

FastLSH 的 LSH 计 算 时 间 明 显 优 于 E2LSH 和

ACHash, 例 如 针 对 高 维 数 据 集 Trevi、 相 比 于

E2LSH,FastLSH 获得大约 80 倍的加速,然而对于

ACHash 则有大约 60 倍的加速。 针对 Gist,FastLSH
相比 E2LSH 和 ACHash 分别获得 24 倍和 11 倍的加

速。 然而对于低维度的数据集、 例如 Random 和

Glove,尽管此时 ACHash 的采样维度为 25,低于

FastLSH 使用固定的采样维度 m = 30, 但是 FastLSH
仍然获得较快的 LSH 计算加速,并比 E2LSH 速度

提高至少 2 倍以上。 主要原因在于 FastLSH 的 LSH
计算的时间复杂度为 O(m)。 并非 E2LSH 的

O(n), 然而对于 ACHash,由于需要进行 Hadamard
变换以及使用固定的采样比例,使得 LSH 计算开销

多于 FastLSH。
此外,索引构建时间的端到端加速如图 1 中

(d)和(h)所示。 由于 FastLSH 哈希代价的显著下

降,其构建索引所花费的时间开销比 E2LSH 与

ACHash 分别最多减少了大约 20 倍与 15 倍。 除了

哈希之外,索引构建过程还包括哈希表初始化和链

表维护等其他操作,这些操作不能加速。 因此,索引

构建中的端到端时间开销减少的程度不如哈希代价

减少的程度。 尽管如此, 对于低维 的 数 据 集,
FastLSH 的 端 到 端 所 需 的 时 间 均 比 E2LSH 与

ACHash 少,说明 LSH 算法中哈希代价在端到端时

间开销中占主要消耗,特别是数据维度非常高时。

5　 结束语

本文基于随机采样提出一种高效的 LSH 函数

FastLSH,用于提高哈希函数的计算效率。 FastLSH
将哈希函数的计算复杂度从 O(n) 降为 O(m), 这

里 m < n。 通过中心极限定理,FastLSH 给出针对

检索结果具有可证明的概率保证, 并严格证明

FastLSH 的碰撞概率渐近等价于经典的 E2LSH。 在

ANN 检索任务上进行了大量的实验,结果表明通过

调节合适的 m, FastLSH 实现与 E2LSH 基本相等的

42 智　 能　 计　 算　 机　 与　 应　 用　 　 　 　 　

　

　 　

　

　 　 　 　 　 第 15 卷　

查询性能并有效提高 LSH 函数的计算效率。

参考文献

[1]

BENTLEY

J

L.

Multidimensional

binary

search

trees

used

for

associative

searching

[J] .

Communications

of

the

ACM,

1975,

18(9):

509-517.
[2]

KATAYAMA

N,

SATOH

S

I.

The

SR- tree:

An

index

structure

for

high-dimensional

nearest

neighbor

queries

[J] .

ACM

Sigmod

Record,

1997,

26(2):

369-380.
[3]

SAMET

H.

Foundations

of

multidimensional

and

metric

data

structures

[M] .

San

Francisco:Morgan

Kaufmann,

2006.
[4]

KUSHILEVITZ

E,

OSTROVSKY

R,

RABANI

Y.

Efficient

search

for

approximate

nearest

neighbor

in

high

dimensional

spaces
[C] / / Proceedings

of

the

Thirtieth

Annual

ACM

Symposium

on

Theory

of

Computing.

New

York:ACM,

1998:

614-623.
[5]

ANDONI

A,

INDYK

P.

Near - optimal

hashing

algorithms

for

approximate

nearest

neighbor

in

high

dimensions

[J] .

Communications

of

the

ACM,

2008,

51(1):

117-122.
[6]

DATAR

M,

IMMORLICA

N,

INDYK

P,

et

al.

Locality -
sensitive

hashing

scheme

based

on

p - stable

distributions[C] / /
Proceedings

of

the

Twentieth

Annual

Symposium

on

Computational

Geometry.

New

York:ACM,

2004:

253-262.
[7]

INDYK

P,

MOTWANI

R.

Approximate

nearest

neighbors:

Towards

removing

the

curse

of

dimensionality[C] / / Proceedings

of

the

Thirtieth

Annual

ACM

Symposium

on

Theory

of

Computing.

Piscataway,

NJ:IEEE,

1998:

604-613.
[8]

GAN

Junhao,

FENG

Jianlin,

FANG

Qiong,

et

al.

Locality -
sensitive

hashing

scheme

based

on

dynamic

collision

counting
[C] / / Proceedings

of

2012

ACM

SIGMOD

International

Conference

on

Management

of

Data.

New

York: ACM,

2012:

541-552.
[9]

HUANG

Qiang,

FENG

Jianlin,

ZHANG

Yikai,

et

al.

Query -
aware

locality-sensitive

hashing

for

approximate

nearest

neighbor

search

[J] .

Proceedings

of

the

VLDB

Endowment,

2015,

9(1):

1-12.
[10]LIU

Wanqi,

WANG

Hanchen,

ZHANG

Ying,

et

al.

I-LSH:

I / O

efficient

c - approximate

nearest

neighbor

search

in

high -
dimensional

space [C] / / Proceedings

of

2019

IEEE

35th

International

Conference

on

Data

Engineering

(ICDE) .

Piscataway,NJ:IEEE,

2019:

1670-1673.
[11] LU

Kejing,

KUDO

M.

R2LSH:

A

nearest

neighbor

search

scheme

based

on

two - dimensional

projected

spaces [C] / /
Proceedings

of

2020

IEEE

36th

International

Conference

on

Data

Engineering

(ICDE) .

Piscataway, NJ: IEEE,

2020:

104510 -
104556.

[12] LU

Kejing,

WANG

Hongya,

WANG

Wei,

et

al.

VHP:

Approximate

nearest

neighbor

search

via

virtual

hypersphere

partitioning

[J] .

Proceedings

of

the

VLDB

Endowment,

2020,

13(9):

1443-1455.
[13] LV

Qin,

JOSEPHSON

W,

WANG

Zhe,

et

al.

Multi - probe

LSH:

Efficient

indexing

for

high - dimensional

similarity

search
[C] / / Proceedings

of

the

33rd

International

Conference

on

Very

Large

Data

Bases.

Vienna,

Austria:

Yahoo

Research,

2007:

950-961.
[14] SUN

Yifang,

WANG

Wei,

QIN

Jianbin,

et

al.

SRS:

Solving

c-approximate

nearest

neighbor

queries

in

high

dimensional

euclidean

space

with

a

tiny

index

[J] .

Proceedings

of

the

VLDB

Endowment,

2014,8(1):1-12.
[15] TIAN

Yao,

ZHAO

Xi,

ZHOU

Xiaofang.

DB - LSH

2. 0:

Locality-sensitive

hashing

with

query - based

dynamic

bucketing

[J] .

IEEE

Transactions

on

Knowledge

and

Data

Engineering,

2023,

36(3):

1000-1015.
[16] YANG

Chengcheng,

DENG

Dong,

SHANG

Shuo,

et

al.

Efficient

locality - sensitive

hashing

over

high - dimensional

data

streams [C] / / Proceedings

of

2020

IEEE

36th

International

Conference

on

Data

Engineering

(ICDE) .

Piscataway,NJ:IEEE,

2020:

1986-1989.
[17]ZHENG

Bolong,

ZHAO

Xi,

WENG

Lianggui,

et

al.

PM-LSH:

A

fast

and

accurate

LSH

framework

for

high - dimensional

approximate

NN

search

[J] .

Proceedings

of

the

VLDB

endowment,

2020,

13(5):

643-55.
[18]KOGA

H,

ISHIBASHI

T,

WATANABE

T.

Fast

agglomerative

hierarchical

clustering

algorithm

using

Locality-Sensitive

Hashing

[J] .

Knowledge

and

Information

Systems,

2007,

12:

25-53.
[19]CHEN

C,

HORNG

S

J,

HUANG

C

P.

Locality

sensitive

hashing

for

sampling - based

algorithms

in

association

rule

mining

[J] .

Expert

Systems

with

Applications,

2011,

38(10):

12388-12397.
[20]LUO

Chen,

SHRIVASTAVA

A.

Arrays

of

(locality-sensitive)

count

estimators

(ace)

anomaly

detection

on

the

edge [C] / /
Proceedings

of

2018

World

Wide

Web

Conference.

New

York:
ACM,

2018:

1439-1448.
[21]CHEN

B,

MEDINI

T,

FARWELL

J,

et

al.

Slide:

In

defense

of

smart

algorithms

over

hardware

acceleration

for

large-scale

deep

learning

systems

[J] .

Proceedings

of

Machine

Learning

and

Systems,

2020,

2:

291-306.
[22]SUNDARAM

N,

TURMUKHAMETOVA

A,

SATISH

N,

et

al.

Streaming

similarity

search

over

one

billion

tweets

using

parallel

locality - sensitive

hashing

[J] .

Proceedings

of

the

VLDB

Endowment,

2013,

6(14):

1930-1941.
[23]LI

Wen,

ZHANG

Ying,

SUN

Yifang,

et

al.

Approximate

nearest

neighbor

search

on

high

dimensional

data:

experiments,

analyses,

and

improvement

[J] .

IEEE

Transactions

on

Knowledge

and

Data

Engineering,

2019,

32(8):

1475-1488.
[24]DASGUPTA

A,

KUMAR

R,

SARLÓS

T.

Fast

locality-sensitive

hashing[C] / / Proceedings

of

the

17th

ACM

SIGKDD

International

Conference

on

Knowledge

Discovery

and

Data

Mining.

New

York:ACM,

2011:

1073-1081.

52第 9 期 谭宗元,

等:

基于位置敏感哈希的高效近似最近邻检索研究

