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Research on thread roll 6D pose estimation network for robotic arm sorting
SHA Wei'?, ZHANG Hua'*?

(1 School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2 Key Laboratory of Modern
Textile Machinery Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China)

Abstract; To enhance the accuracy and efficiency of thread rolls 6D pose estimation in the sorting task, a novel pose estimation
method is proposed. This method implements vector field prediction and semantic segmentation based on the improved ResNeSt
network, and uses the EPnP algorithm to compute the 6D pose of thread rolls. The ResNeSt effectively aggregates feature
information in different channels through multi-branch feature extraction and Split—Attention mechanisms, and is used to build an
encoder—decoder network. Euclidean distance loss of unit vector error and regularization of distance from keypoints to predicted
vectors are used for network training. A thread roll dataset is designed and created for training and testing. The pose estimation
results are evaluated using the 2D Projection metric and ADD-S metric. Experimental results demonstrate that the proposed method
significantly improves the precision and speed of thread roll 6D pose estimation, reduces the model parameters, and effectively meets
the requirements of thread roll grasping and sorting tasks.
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Fig. 1 Thread roll pose estimation scheme
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Table 1 Comparison of thread roll pose estimation results in terms of 2D Projection metric
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Table 2 Comparison of thread roll pose estimation results in terms of ADD-S metric
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Fig. 9 Visualization results of thread roll occlusion scene test
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Table 3 Comparison in terms of parameters and running speed
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