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摘　 要:
 

为了提高筒子纱分拣任务中 6D 位姿估计的准确性与效率,提出一种新颖的位姿估计方法。 该方法基于改进的

ResNeSt 网络实现向量场预测和语义分割,结合 EPnP 算法计算筒子纱 6D 位姿。 ResNeSt 网络通过多分支特征提取与 Split-
Attention 机制,有效聚合不同通道中的特征信息,用于构建编码器-解码器网络。 单位向量误差的欧式距离损失及关键点到

预测向量距离的正则化被用于网络训练。 设计并制作了一组筒子纱数据集用于训练和测试。 通过 2D
 

Projection 指标和

ADD-S 指标对位姿估计结果进行评价。 实验结果表明,所提方法显著提高筒子纱 6D 位姿估计精度和速度,减少了模型参数

量,能够有效满足筒子纱的抓取和分拣任务的需求。
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Abstract:
 

To
 

enhance
 

the
 

accuracy
 

and
 

efficiency
 

of
 

thread
 

rolls
 

6D
 

pose
 

estimation
 

in
 

the
 

sorting
 

task,
 

a
 

novel
 

pose
 

estimation
 

method
 

is
 

proposed.
 

This
 

method
 

implements
 

vector
 

field
 

prediction
 

and
 

semantic
 

segmentation
 

based
 

on
 

the
 

improved
 

ResNeSt
 

network,
 

and
 

uses
 

the
 

EPnP
 

algorithm
 

to
 

compute
 

the
 

6D
 

pose
 

of
 

thread
 

rolls.
 

The
 

ResNeSt
 

effectively
 

aggregates
 

feature
 

information
 

in
 

different
 

channels
 

through
 

multi-branch
 

feature
 

extraction
 

and
 

Split-Attention
 

mechanisms,
 

and
 

is
 

used
 

to
 

build
 

an
 

encoder-decoder
 

network.
 

Euclidean
 

distance
 

loss
 

of
 

unit
 

vector
 

error
 

and
 

regularization
 

of
 

distance
 

from
 

keypoints
 

to
 

predicted
 

vectors
 

are
 

used
 

for
 

network
 

training.
 

A
 

thread
 

roll
 

dataset
 

is
 

designed
 

and
 

created
 

for
 

training
 

and
 

testing.
 

The
 

pose
 

estimation
 

results
 

are
 

evaluated
 

using
 

the
 

2D
 

Projection
 

metric
 

and
 

ADD-S
 

metric.
 

Experimental
 

results
 

demonstrate
 

that
 

the
 

proposed
 

method
 

significantly
 

improves
 

the
 

precision
 

and
 

speed
 

of
 

thread
 

roll
 

6D
 

pose
 

estimation,
 

reduces
 

the
 

model
 

parameters,
 

and
 

effectively
 

meets
 

the
 

requirements
 

of
 

thread
 

roll
 

grasping
 

and
 

sorting
 

tasks.
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0　 引　 言

在纺织行业中,筒子纱的分拣、搬运均需要人工

参与,这种作业方式不仅效率低下,而且劳动强度较

高。 近年来,基于视觉引导的机械臂分拣筒子纱代

替人工分拣的方案成为当下传统纺织行业的一个重

要发展趋势[1] 。 然而,由于缺乏对筒子纱 6D 位姿

检测的能力,一般的基于视觉引导的机械臂抓取任

务仅针对置于平面上的物体,无法应对筒子纱堆叠

场景[2] 。 筒子纱的 6D 位姿是指其相对于相机坐标

系的三维旋转矩阵 R 和三维平移矩阵 t。 实现精确

的筒子纱 6D 位姿估计的关键挑战有遮挡、光法线

变化和弱纹理特征等[3-5] 。 Ulrich 等学者
 [6] 通过对

物体进行多视点采样建立模板库,将待测图像与模

板库进行相似性匹配,可以适应弱纹理物体,然而这

种方法空间搜索效率低,且采用稀疏视角采样无法

保证位姿估计的精度。 在传统方式中,利用手工制

作的特征[7-9]建立输入图像与 3D 模型之间对应关

系的姿态估计方法,由于无法获得深层次的上下文,
在面对堆叠场景和光照变化时鲁棒性较差。

近年来,深度卷积神经网络在物体检测和语义

分割中表现出强大特征提取能力,基于深度学习的



位姿估计方法成为研究的热点。 相较于从输入图像

中直接回归物体姿态[10] ,使用卷积神经网络回归

2D 关键点,然后使用 PnP 算法[11] 计算物体 6D 位

姿的两阶段物体姿态估计方法具有稳定的算法可解

释性。 Rad 等学者[12] 通过检测物体图像包围盒顶

点位置,在仅使用 RGB 图像下实现了较好的位姿估

计效果,但物体被视为全局实体影响包围盒顶点检

测精度。 Peng 等学者[13] 提出 PVNet 回归物体向量

场用于关键点投票的方法,对遮挡具有一定的鲁棒

性,但是受限于 ResNet[14]的单层特征和缺乏跨通道

信息融合,物体位姿估计精度仍有提升空间。 Zhang
等学者[15]在多尺度上优化向量场回归,然而这种方

法无法实现多分支结构通道间的信息交互。
基于以上分析, 本文提出采用基于改进的

ResNeSt[16]构建筒子纱 6D 位姿估计的编码器-解码

器网络。 ResNeSt 将通道注意力和多分支结构融合

在特征提取单元中,使模型参数量减少情况下,却增

强了对弱纹理筒子纱特征提取能力。 同时,考虑到

像素点与关键点之间距离对关键点检测的影响[17] ,
单位向量误差的欧式距离损失及关键点到预测向量

的距离作为正则化被用于网络训练。 最后,受限于

纺织领域缺少用于筒子纱位姿估计的数据集,因此

设计并制作了一组用于筒子纱位姿估计的数据集用

来验证所提方法。

1　 位姿估计网络

1. 1　 基于关键点检测的位姿估计方法概述

筒子纱位姿估计采用稀疏 2D-3D 关键点对应

的方法[13] ,如图 1 所示。 筒子纱的单张 RGB 图像

输入到所提编码器-解码器网络进行语义分割和向

量场预测,根据预测的向量场和语义分割掩码采用

投票的方式检测筒子纱 2D 关键点,最后根据 EPnP
算法[10]计算出筒子纱的位姿矩阵 [R

 

t]。

筒纱6D位姿

编码器-
解码器
网络

EPnP

loss

语义分割 向量场预测

投票关键点

稀疏2D-3D对应

输入图像

图 1　 筒子纱位姿估计方案

Fig.
  

1　 Thread
 

roll
 

pose
 

estimation
 

scheme

　 　 关键点的向量场定义为筒子纱像素 p 相对于

2D 关键点 k 的单位方向向量 uk(p), 数学公式为:

uk(p) = k - p
‖k - p‖2

(1)

　 　 根据单位方向向量采用基于 RANSAC 投票机

制生成关键点假设。 具体来说,在预测的向量场中

随机选取 2 个筒子纱像素对应预测的单位方向向量

vk(p1)、vk(p2), 把两者所在直线的交点作为关键点

k 的假设 hk, 如图 2 所示。 重复此操作 N 次得到候

选关键点假设集合 {hk,
 

i | i = 1,2,…,N}。

图 2　 关键点假设

Fig.
 

2　 Keypoint
 

hypothesis

　 　 对于关键点 k 的一组假设集合,计算关键点假

设 hk,i 的投票得分 wk,i, 数学公式为:

wk,i = ∑
p∈O

Ⅱ
(hk,i - p) T

‖hk,i - p‖2
vk(p) ≥ 0. 99( ) ,

Ⅱ(δ) =
1,

 

若 δ 为真

0,
 

其它{ (2)

　 　 在投票过程中,具有更高得分的关键点假设代

表该点将更有可能是正确关键点,因此选择具有最

高得分的关键点假设来建立稀疏的 2D-3D 对应关

系。 而后用 EPnP 算法计算出 6D 位姿,具体为首先

选取世界坐标系下控制点 Cw
k 。 对于世界坐标系下

3D 关键点 Xw
k 可表示为:

Xw
k = ∑

4

n = 1
αknCw

n (3)

　 　 其中 ∑
4

n = 1
α kn = 1, 然后构建 3D 关键点 Xw

k 在相

机坐标系下的映射 Xc
k:

　 Xc
k = RXw

k + t = ∑
4

n = 1
α kn(RCw

n + t) = ∑
4

n = 1
α knCc

n (4)

　 　 其中, Cc
n 表示控制点 Cw

n 在相机坐标系下的表

示,这里, n = 1,2,3,4。
接下来,利用相机内参 K 构建投影映射:

pk = KXc
k = K∑

4

n = 1
αknCc

n (5)
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　 　 Cc
n 可通过式(5)求得,最后可以通过式(4)求

得位姿 [R
 

　 t]。
1. 2　 基于 ResNeSt 的像素级投票网络

所提方法基于改进的 ResNeSt50 构建像素级投

票网络。 ResNeSt 可以在不同的网络分支上应用通

道软注意力来进行跨通道特征交互和学习多样化表

示,从而提高语义分割和向量场的精度
 

。
　 　 ResNeSt 将类似 ResNeXt[18] 的多分支结构与

SKnet[19]的软注意力机制结合。 ResNeSt 模块结构

如图 3 所示,将输入沿着通道维度划分为 K 个组

(Cardinal), 每个组中又进一步分为 R 个分支

(Split),这样总共可以提取 K × R 个特征图组。 对

于组内一个分支在进行 3×3 卷积之后,使用拆分注

意力模块(Split
 

Attention)对各分支特征图组进行加

权;然后对 K 个组输出的特征图进行拼接,最后进

行 1×1 卷积后与输入进行相加。

Conv,1?1
C/K/R

Conv,1?1
3?3,C/K

(h,w,C/K)
SplitAttention

(h,w,C/K)

(h,w,C)

(h,w,c)

Conv,1?1,c

Concatenate

Input

Conv,1?1
C/K/R

Conv,1?1
3?3,C/K

SplitR

Conv,1?1
C/K/R

Conv,1?1
3?3,C/K

Split1

Conv,1?1
C/K/R

Conv,1?1
3?3,C/K

SplitR

(h,w,c)

Split1
Cardinal1 CardinalK

(h,w,C/K)
SplitAttention

图 3　 ResNeSt 模块结构图

Fig.
 

3　 Block
 

structure
 

diagram
 

of
 

ResNeSt

　 　 拆分注意力机制的具体结构如图 4 所示,通过

接收一个组内的 R 个输入并进行求和,再经由全局

池化逐通道地聚合全局上下文,对此可以表示为:

skc =
1

H × W∑
H

i
∑
W

j
Ûk

c( i,
 

j) (6)

　 　 其中, skc 表示第 c 通道的全局信息; Ûk
c( i,

 

j) 表

示来自第 k 组内全部分支求和后的第 c 通道特征图

在 ( i,
 

j) 处的值, k ∈ {1,2,3,…,K};H 和 W 分别

表示模块输出特征图高和宽。
　 　 对于一个组的输出是通过对组内 R 个分支输

入特征图使用通道软注意力分别进行加权融合产

生,具体公式如下:

Vk
c = ∑

R

i = 1
ak
i(c)UR(k-1) +i (7)

ak
i(c) =

exp(Gc
i( sk))

∑
R

j = 1
exp(Gc

j( sk))
,

 

　
 

R > 1

1
1 + exp( - Gc

i( sk))
,

 

R = 1

ì

î

í

ï
ï
ï

ï
ï
ï

(8)

　 　 其中, Vk
c 表示第 k 组输出中的第 c 通道的特征

图; ak
i(c) 表示每个分支特征图组的权重; Gc

i 表示

每个分支第 c 通道的权重映射函数; UR(k-1) +i 表示

第 k 组内第 i 分支的特征图。

Input1 Input2 InputR

(h,w,C/K)

(h,w,C/K)

(C/K)

(C/K)

(C/K)

(C/K)

(h,w,C/K)

Globalpooling

DenseC/K′+BN+ReLU

r-Softmax

DenseC/K DenseC/K DenseC/K

图 4　 Split
 

Attention 结构图

Fig.
 

4　 Structure
 

diagram
 

of
 

Split
 

Attention

　 　 基于 ResNeSt50 构建的编码器-解码器像素级投

票网络,如图 5 所示,用于筒子纱向量场和分割掩码

的预测。 在编码过程中将特征图下采样到输入 RGB
图像尺寸的 1 / 8 后,不再使用后续的 ResNeSt

 

Block。
在解码阶段,在特征图上反复执行跳跃连接、卷积和

上采样操作,直到恢复到原输入图像尺寸。

Conv-BN-ReLU

Maxpooling

ResNetStBlockwithstrides

ResNeStBlock Bilinearupsampling

图 5　 基于 ResNeSt 的像素级投票网络

Fig.
 

5　 Pixel-level
 

voting
 

network
 

based
 

on
 

ResNeSt

1. 3　 损失函数设计
 

对于向量场的预测任务,通过计算预测的单位

方向向量与真实单位方向向量之间的欧式距离来定

义向量场预测损失函数,数学公式具体如下:
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Lvf =
1
KO∑

ki∈K
∑
p∈O

‖vi(p) - ui(p)‖2 (9)

　 　 其中, p 表示属于物体 O的像素; K 表示物体关

键点集合; v(p) 表示像素 p 的预测单位方向向量;
u(p) 表示像素真实单位向量。
　 　 此外,像素到关键点距离对关键点假设的影响

如图 6 所示。 当 2 个像素的预测单位向量误差相同

时,像素和关键点之间的距离影响关键点假设的偏

差程度。 因此关键点到预测单位向量的距离 d 作为

正则化项被添加到向量场预测损失中,这本质上是

增大了对远离关键点的单位向量预测的惩罚力度,
正则化公式如下:

　 Lr =
1
KO∑

k∈K
∑
p∈O

l(p,k)·
vyp·ux

p - vxp·uy
p

(vxp) 2 +(vyp) 2
(10)

其中, l(p,k) 表示像素点 p到关键点 k的距离;
v(p,k) = (vxp,vyp) 表示像素 p 对关键点 k 的单位方向

向量的预测; u(p,k) = (ux
p,uy

p) 表示像素 p 对关键

点 k 的真实单位方向向量。

真实单位向量

预测单位向量

像素点

关键点

pj

u(pj)

v(pj)
α

d(pi,k)

k

d(pj,k)

u(pi)

v(pi)pi

α

图 6　 像素到关键点距离对关键点假设的影响

Fig.
 

6 　 The
 

impact
 

of
 

pixel - to - keypoint
 

distance
 

on
 

keypoint
 

hypothesis

　 　 对于语义分割标签 s(p)( s(p) ∈ [0,1],∀O)
的预测,采用 Softmax 交叉熵损失函数:

Lseg = - ∑
p∈O

log( s(p)) (11)

　 　 总的损失函数为:

L = αLseg + Lvf + βLd (12)
　 　 其中, α 和 β 表示损失函数的平衡权重系数。

2　 数据集制作

由于没有可供筒子纱 6D 位姿估计任务使用的

公开数据集,本文提出一种基于筒子纱 RGB 图像的

数据集构建方案,并制作一组筒子纱数据集,用于验

证所提方法,如图 7 所示。

RGB相机

筒纱

Aruco码 aTi
c

oTi
a

图 7　 筒子纱数据集构建方案

Fig.
 

7　 Scheme
 

for
 

creating
 

the
 

thread
 

roll
 

dataset

　 　 在筒子纱的周围放置 12 个 Aruco 标记,并分别

确定筒子纱相对于每个 Aruco 标记的位姿 a
oT; 然

后,使用相机获取筒子纱和 Aruco 标记的 RGB 图

像,并用 OpenCV 检测可识别的 Aruco 标记相对于

相机坐标系的位姿 c
aT; 最后,根据 Aruco 标记的位

姿 c
aT 计算出筒子纱相对于相机的位姿 c

oT, 公式

如下:

c
oT = 1

n ∑
n

i = 1

c

a
Ti

   

a
oTi (13)

　 　 其中, c
oT 表示筒子纱相对于相机的位姿; c

aTi 表

示第 i 个 Aruco 标记相对于相机的位姿;
 a
oT i 表示筒

子纱相对于第 i 个 Aruco 标记的位姿; n 表示可检测

到的 Aruco 标记的数量。
对于筒子纱的掩码获取,通过固定筒子纱并使

用三维扫描仪对筒子纱建模,如图 8 所示。 随后根

据前面计算出的筒子纱位姿通过对三维模型进行

2D 投影的方式获取筒子纱的掩码。

(a)
 

筒子纱 1　 　 　 　 　 (b)
 

筒子纱 2　 　 　 　 　 (c)
 

筒子纱 3　 　 　 　 　 (d)
 

筒子纱 4
图 8　 筒子纱三维模型

Fig.
  

8　 Three-dimensional
 

model
 

of
 

thread
 

roll

　 　 制作的筒子纱数据集包括:分辨率为 640×480
的 RGB 图像、掩码、筒子纱位姿标签和筒子纱三维

模型,共制作 4 种筒子纱类别,按照尺寸从小到大分

别为筒子纱 1 到筒子纱 4,图像数量分别为 1
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1
 

201、1
 

240、1
 

203 和公开 LINEMOD 数据集中每个

类别数量基本一致,可以满足训练和测试所需。

3　 实验结果及分析

实验环境为 Intel
 

Xeon
 

Platinum
 

8255C
 

CPU,
GeForce

 

3090
 

GPU,Ubuntu18. 04. 5,Pytorch1. 8. 1 深

度学习框架,CUDA11. 1。 采用 Adam 作为网络训练

时的优化器,初始学习率为 0. 001,每 20 轮迭代学

习率衰减一半,批次大小设置为 16。 同时,使用在

线数据增强,包括随机裁切、缩放、旋转和颜色抖动

等操作,按照 8 ∶ 2 划分训练集和测试集,关键点数

量设置为 8,训练 240 轮。
3. 1　 评价指标

实验结果使用的评价指标为 2D
 

Projection 指标

和 ADD 指标[13] 。 其中,2D
 

Projection 指标是如果物

体模型点从网络估计的位姿到真实位姿的 2D 投影

距离平均值小于指定像素(pixel)阈值,则认为姿势

正确。 ADD 指标计算在 3D 物体空间中的误差,如
果预测的姿态和真实姿态之间的物体模型点的平均

距离 ADD 小于指定倍数的模型直径 d, 则认为预测

正确,对于对称物体,使用最接近的模型点来计算平

均距离 ADD-S。
3. 2　 实验结果分析

将本文所提方法和原 PVNet 方法分别使用筒

子纱数据集进行训练和评价,实验对比结果见表 1、
表 2。
　 　 从表 1 中可以看出,本文所提方法在 4 类筒子

纱评估中,有 3 种不同阈值下的 2D
 

Projection 精度

均超过了原方法,尤其在 3
 

pixel 和 1
 

pixel 阈值下平

均精度分别提升了 7. 03%和 12. 17%,这表明本文

所提方法在更高评价水平下准确率更高。 由于使用

基于改进的 ResNeSt50 的像素级投票网络能够更有

效地提取弱纹理筒子纱的多分支特征,实现各通道

间的信息交互。 这保证了向量场的预测和与分割更

准确,从而提高了筒子纱位姿估计的准确性。
　 　 表 2 中对比结果显示,本文所提方法相较于原

PVNet 方法在 ADD-S 指标下的精度得到提升, 在

0. 05d和0. 02d的阈值下, 本文所提方法在 4 类筒子

纱中的 ADD-S 指标均超过 PVNet 方法。 尤其对于

筒子纱 4 这类大尺寸且纹理较弱的筒子纱在 3 种阈

值条件下的精度均有提升,这表明对大尺寸的弱纹

理筒子纱进行位姿估计时具有更好的鲁棒性。

表 1　 根据
 

2D
 

Projection 指标比较筒子纱位姿估计结果

Table
 

1　 Comparison
 

of
 

thread
 

roll
 

pose
 

estimation
 

results
 

in
 

terms
 

of
 

2D
 

Projection
 

metric

训练数据集
PVNet

1
 

pixel 3
 

pixel 5
 

pixel

本文方法

1
 

pixel 3
 

pixel 5
 

pixel

筒子纱 1 24. 45 94. 75 99. 56 46. 72 98. 69 99. 56

筒子纱 2 10. 79 93. 36 99. 59 17. 42 95. 85 100. 00

筒子纱 3 9. 68 87. 90 97. 18 21. 37 94. 35 98. 79

筒子纱 4 3. 40 74. 71 95. 40 11. 49 89. 98 98. 28

平均值 12. 08 87. 68 97. 93 24. 25 94. 72 99. 16

表 2　 根据
 

ADD-S 指标比较筒子纱位姿估计结果

Table
 

2　 Comparison
 

of
 

thread
 

roll
 

pose
 

estimation
 

results
 

in
 

terms
 

of
 

ADD-S
 

metric

训练数据集
PVNet

0. 02d 0. 05d 0. 10d

本文方法

0. 02d 0. 05d 0. 10d

筒子纱 1 45. 41 93. 01 100. 00 64. 63 99. 13 100. 00

筒子纱 2 54. 77 95. 43 100. 00 61. 82 97. 10 100. 00

筒子纱 3 44. 35 84. 27 100. 00 46. 77 89. 51 100. 00

筒子纱 4 34. 48 73. 56 97. 70 50. 00 91. 38 100. 00

平均值 44. 75 86. 57 99. 43 55. 81 94. 28 100. 00

3. 3　 遮挡实验

在分拣过程中会遇到遮挡的情况。 为了测试所

提方法在遮挡情况下的位姿估计效果,本实验将训

练好的网络模型直接用来检测被部分遮挡的 4 类筒

子纱,效果如图 9 所示。
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图 9　 筒子纱截断场景测试可视化结果

Fig.
 

9　 Visualization
 

results
 

of
 

thread
 

roll
 

occlusion
 

scene
 

test

　 　 在面对筒子纱遮挡情况下,本文所提方法能够

有效进行位姿估计,这是因为不可见部分的关键点

检测可以通过可见部分的预测方向向量投票得到。
此外,对于检测筒子纱 3 这种模糊和噪声多的图像

也具有一定鲁棒性。
3. 4　 参数量与运行速度实验

分别输入 640×480(宽度×高度)的图像到所提

网络和 PVNet 网络进行模型参数量和运行速度测

试,实验结果见表 3。

表 3　 在参数量与运行速度上对比

Table
 

3　 Comparison
 

in
 

terms
 

of
 

parameters
 

and
 

running
 

speed

对比方法 参数量 / M 总耗时 / ms 每秒帧数 / FPS

PVNet 12. 96 17. 64 56

本文方法 3. 92 15. 17 65

　 　 本文所提方法在提升位姿估计精度同时,在网

络参数量上仅为原网络的 30%,单张图像的总耗时

减少了 2. 47
 

ms,每秒帧数提高了 9。 由此可知,本
文所提网络在运行速度上更具有优势,能够满足在

纺织过程中机械臂分拣筒子纱的实时性要求。 同时

由于参数量大幅降低,使得模型更容易部署在边缘

计算设备上。

4　 结束语
 

针对筒子纱分拣任务中弱纹理筒子纱 6D 位姿

估计问题,本文基于改进的 ResNeSt50 的像素级投

票网络,通过将多分支结构与通道注意力结合提升

弱纹理筒子纱的特征提取质量,并提出单位向量误

差的欧式距离损失和基于关键点到预测向量距离的

正则化,用于网络训练。 在构建的筒子纱数据集上

进行实验。 实验表明,本文所提方法能够提升弱纹

理筒子纱的位姿精度。 同时模型参数量大幅减少,
模型的实时性有效提升,这使得筒子纱位姿估计网

络能够更容易地部署在纺织车间中的边缘计算设备

上。 能够满足纺织工业中机械臂对筒子纱分拣,及
上、下纱架等任务的需求。
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