文章编号: 2095-2163(2020)03-0353-04

中图分类号: O469 文献标志码: A

孔洞对 3D 打印 AlSi10Mg 合金拉伸性能影响的分子动力学模拟

陈传波,马 芳,罗一平

(上海工程技术大学 机械与汽车工程学院,上海 201620)

摘 要:采用分子动力学方法模拟含孔洞的 3D 打印 AlSi10Mg 合金单轴拉伸过程,研究孔洞对晶体力学行为影响。结果表明:随着孔洞尺寸的增加,材料的弹性模量、屈服强度、峰值应变都相应下降。孔洞数量的增加,加剧了拉伸断裂进程。本研究 主要从原子尺度分析孔洞对多元合金力学性能影响,为今后实验和研究孔洞对 3D 打印提供理论指导。 关键词: AlSi10Mg 合金; 单轴拉伸;孔洞; 分子动力学模拟

Molecular dynamics simulation of influence of holes on tensile properties of 3D printing AlSi10Mg alloy

CHEN Chuanbo, MA Fang, LUO Yiping

(School of Mechanical and Automotive Engineering, Shanghai University of Engineering Science, Shanghai 201620, China)

[Abstract] The uniaxial stretching process of 3D printed AlSi10Mg alloy with voids is simulated by molecular dynamics method, and the influence of pores on the mechanical behavior of the crystal is studied. The results show that the elastic modulus, yield strength and peak strain of the material decrease with the increase of the pore size. The increase in the number of holes exacerbates the tensile fracture process. This study mainly analyzes the influence of pores on the mechanical properties of multi–alloys at the atomic scale, and provides theoretical guidance for future experiments and research on holes for 3D printing. [Key words] AlSi10Mg alloy; uniaxial tension; holes; molecular dynamics simulation

0 引 言

随着汽车行业的不断发展,对环境、能源和交通 安全等方面产生了很大影响。汽车轻量化作为现在 研究的热门课题,吸引了大批科研人员从事轻量化 材料研究,而铝合金^[1]是轻质材料的代表,具有较 高的强度和硬度。而 3D 打印技术是可以根据不同 设计需求,层层堆垛的新型成形制造技术。 AlSi10Mg作为 3D 打印的一种十分普遍的材料,被 众多学者广泛研究。柯宇等人^[2]对选区激光熔化 的 AlSi10Mg合金进行了微观组织分析和力学性能 研究,发现经过时效处理后,硬度有所降低。李保强 等人^[3]对 AlSi10Mg合金进行了有限元模拟,得出熔 池搭接区域残余应力高,中间偏低。万华亮等人^[4] 对 3D 打印 AlSi10Mg 合金的孔洞进行了分析,预估 了孔隙率对增材制造疲劳寿命影响。

目前,对 AlSi10Mg 合金的研究大多是物理实验 及微观尺度的热应力模拟,对原子层面的拉伸力学 性能的研究却不是很多,且基本集中在单质金属元 素的拉伸模拟。刘明辉等人^[5]研究了铝合金刃型 位错与合金元素的相互作用,从原子层面解释了位 错钉扎对铝合金的强化作用。张宁等人^[6]研究球 形孔洞对双晶铜单向拉伸的影响,得出孔洞显著降 低了双晶体的弹性模量和屈服应力。梁华等人^[7] 研究了孔洞和空位对铝单晶力学性能的影响,得出 不同晶向的拉伸,孔洞的生长变形微观机制不同。 阐明了形变机制主要是位错的移动、堆积和发射。

本文主要对含孔洞 AlSi10Mg 合金进行拉伸模 拟,分析孔洞大小对其力学性能的影响,为 3D 打印 AlSi10Mg 合金缺陷引起的破坏机理提供依据。

1 计算模型与方法

1.1 模型建立

3D 打印 AlSi10Mg 合金主要过程是通过高能激 光熔化 AlSi10Mg 金属粉末,冷却凝固得到相应制 品,但由于物理实验限制,必然会产生孔洞。使用分 子动力学方法,模拟其制备过程:首先,建立晶格常 数为 $a_0 = b_0 = c_0 = 4.045$ 27 Å, $\alpha = \beta = \gamma = 90^\circ$ 的面 心立方(fcc)的 Al 单晶;然后,通过 Si 和 Mg 以质量 分数为 0.10 及 0.05 替换 Al 原子,生成 AlSi10Mg 合

通讯作者:马 芳 Email:mf1505@126.com

收稿日期: 2019-12-04

作者简介:陈传波(1993-),男,硕士研究生,主要研究方向:金属 3D 打印分子模拟;马 芳(1977-),女,博士,副教授,主要研究方向:3D 打 印材料及应用研究。

金,并使用共轭梯度法进行能量最小化弛豫;最后, 建立晶胞大小为 15 a₀ × 15 a₀ × 15 a₀ 的拉伸模型, AlSi10Mg 合金体系即如图 1 所示。笛卡尔坐标系 x, y, z 轴分别对应晶体的[100]、[010]、[001]晶 向。模拟过程中,体系采用了周期性边界。

1.2 工况设计

由于体系属于纳米尺度的下拉伸模型,使得应 变率比实验中高出几个数量级^[8]。本文采用的应 变率为 2×10⁹/s。工况一:孔洞尺寸分别为 1 *a*₀, 3 *a*₀ 和 5 *a*₀。工况二:孔洞个数有 1,2,4 个,尺寸为 2 *a*₀,孔洞沿 *z* 轴方向,位置分布为中心对称。

图 1 AlSi10Mg 合金体系模型 Fig. 1 Model for AlSi10Mg alloy

1.3 模拟过程

使用 LAMMPS 软件模拟 3D 打印制品中含孔洞 的拉伸模拟。模拟细节如下:时间步长为 0.001 ps, 在 300 K 温度下弛豫对弛豫后的模型进行各种工况 处理,然后进行沿 x 轴方向均匀拉伸模拟,直到模拟 试样拉断为止。模拟过程每隔 0.1 ps 输出体系的应 变应力等参数。

1.4 势函数及分析方法

嵌入原子势 EAM (Embedded Atom Method)是 金属体系中最常用的多体势函数,其思想是把晶体 的总势能分为原子间相互作用的对势和多体中原子 核嵌入在电子云中的嵌入能,其表达式为:

$$E = \sum_{i} F_{i} \left[\sum_{j \neq i}^{n} \rho_{i}(r_{ij}) \right] + \frac{1}{2} \sum_{i} \sum_{j \neq i} \mathcal{O}_{ij}(r_{ij}) .$$

$$(1)$$

其中, *E* 为势能; *F_i* 为原子 *i* 的嵌入能; ρ_i 为原 子 *i* 处的电子云密度; 原子 *j* 是与原子 *i* 相邻的原子; $r_{ij} \ \pi \ \phi_{ij}$ 是原子 *i* 和原子 *j* 之间的距离和对势。本文 使用的势函数是 Jelinek 等人^[9] 修正后的 MEAM 嵌 入势,该势函数很好地描述了 Al、Si 和 Mg 之间的相互作用。

多面体模板匹配^[10](Polyhedral Template Matching, PTM)可以用来分析材料局部组织的变化,本文采用了 OVITO 软件提供的 PTM 进行含孔 洞拉伸过程的原子结构分析。

2 结果与讨论

2.1 应力-应变曲线

AlSi10Mg 合金模型在不同孔洞尺寸和不同孔洞个数情况下单轴拉伸应力应变曲线如图2所示。

从图 2 可以得出,在不同孔洞尺寸和不同孔洞 个数情况下,AlSi10Mg 合金的拉伸应力-应变曲线 的变化趋势都大致相似,可以将其分为 3 个阶段。

第一阶段是弹性阶段,动态拉伸的应力-应变 曲线呈线性关系;第二阶段是屈服阶段,应力-应变

355

同曲线呈非线性关系,产生塑性变形;第三阶段是断裂阶段,应力随着应变增加而减小,直至发生断裂。 AlSi10Mg 合金力学性能参数见表1。

表1 不同孔洞大小和个数对应的弹性模量、抗拉强度和峰值应变

Tab. 1 Elastic modulus, tensile strength and peak strain corresponding to different hole sizes and numbers

参数类型		弹性模量/GPa	抗拉强度/GPa	峰值应变
尺寸	$1 a_0$	37.29	4.71	0.27
	$3 a_0$	33.87	2.32	0.12
	$5 a_0$	20.39	1.34	0.07
个数	hole_1	31.10	3.04	0.14
	hole_2	29.14	2.76	0.13
	hole_4	28.40	2.41	0.11

从图 2 及表 1 可以看出,随着孔洞大小从 1 a₀ 升高到 5 a₀, AlSi10Mg 弹性模量从 37.29 GPa 减小 到 20.39 GPa,抗拉强度从 4.71 GPa 降低到 1.34 GPa,峰值应变从 0.27 减少到 0.07;孔洞个数 从 1 个增加到 4 个,弹性模量从 31.10 GPa 减小到 28.40 GPa,抗拉强度从 3.04 GPa 降低到 2.41 GPa, 峰值应变从 0.14 减少到 0.11。

2.2 原子结构演化

为了进一步研究孔洞对拉伸性能的影响,从原 子组织演变角度来进行探究,采用 OVITO 软件对 AlSi10Mg 合金体系进行 PTM 分析。图 3 和图 4 分 别是含有 1 个孔洞和 2 个孔洞动态拉伸图,孔洞尺 寸皆为 2 a₀,应变率为 2×10⁹/s。其中,灰白色、蓝 色、绿色和红色分别代表 other(无序)、bcc(体心立 方)、fcc(面心立方)、hcp(密排六方)、ico(二十面体 协调)和 sc(简单立方)原子结构。

Fig. 3 Single hole atomic structure evolution diagram

Fig. 4 Double hole atomic structure evolution diagram

从图 2 的动态拉伸应力-应变曲线可知,当单 孔 AlSi10Mg 合金体系应变为 5.6%、12.5% 及 40.0% 时,分别处于拉伸过程中的弹性形变阶段、屈服形变 阶段和断裂形变阶段。从图 3 可以观察到,单孔 AlSi10Mg 合金在弹性应变阶段,fcc 结构占主体;从 弹性形变到屈服形变阶段,原子结构从 fcc 向 hcp 转 变;随着应变的增加,孔洞逐渐增大,周围无序原子 增多,hcp 和 sc 结构原子占大多数,直到拉伸断裂。

图 4 相较于图 3,孔洞增加了 1 个,在弹性变形阶段,hep 结构和 fcc 结构占比接近;随着应变的增加, fcc 结构逐渐减少,hep 结构和 sc 结构不断增加。孔 洞周围的无序原子增多,且 2 个孔洞增长基本一致。

3 结束语

本文运用分子动力学模拟了含孔洞的 AlSi10Mg合金体系的单轴动态拉伸过程,对合金拉 伸形变过程进行了研究。结果表明:

(1)随着孔洞大小从 1 *a*₀ 升高到 5 *a*₀, AlSi10Mg 弹性模量从 37.29 GPa 減小到 20.39 GPa,抗拉强度 从 4.71 GPa 降低到 1.34 GPa,峰值应变从 0.27 减少 到 0.07;孔洞个数从 1 个增加到 4 个,弹性模量从 31.10 GPa 减小到 28.40 GPa,抗拉强度从 3.04 GPa 降低到 2.41 GPa,峰值应变从 0.14 减少到 0.11。

(2)随着拉伸应变的增加,fcc 结构逐渐减少, hcp 和 sc 结构明显增多,孔洞周围的无序原子伴随 着孔洞的增长而增多。

参考文献

- LI Hui, YAN Zhaohui, CAO Lingyong. Bake hardening behavior and precipitation kinetic of a novel Al-Mg-Si-Cu aluminum alloy for lightweight automotive body [J]. Materials Science & Engineering A, 2018, 728:88.
- [2] 柯宇,马盼,马永超,等.激光选区熔化 AlSi10Mg 合金微观组 织及力学性能研究[J].应用激光,2019,39(2):198.