文章编号: 2095-2163(2020)11-0056-05

中图分类号: TM921 文献标志码: A

# 永磁同步电机匝间短路故障电流分析

周光亮, 吴钦木

(贵州大学 电气工程学院,贵阳 550025)

摘 要:针对永磁同步电机在不同的控制回路中出现匝间短路时的故障现象,利用 MATLAB/Simulink 仿真平台搭建了一个带有匝间短路的永磁同步电机模型(Permanent-magnet synchronous motor,PMSM)。闭环控制状态下采用滞环电流矢量控制 方法,其中包括速度环 PI 控制器、反 Park 变换以及 PWM 调制系统。在搭建的带有故障的永磁同步电机模型中,可以通过外 部参数输入来决定电机是否发生故障,并对 PMSM 在开环以及闭环控制状态下,分别对电机正常运行时和发生故障时的输出 结果进行对比分析。实验结果与理论计算结果一致,为今后对永磁同步电机匝间短路故障的研究提供了可靠依据。 关键词:永磁同步电机;匝间短路;矢量控制; PWM 调制;反 Park 变换

# Vector control of PMSM Based on PI regulator

### ZHOU Guangliang, WU Qinmu

(College of electrical engineering, Guizhou University, Guiyang 550025, China)

[Abstract] In order to better study and analyze the fault phenomenon of permanent magnet synchronous motor (PMSM) when inter turn short circuit occurs in different control loops, a permanent magnet synchronous motor model with inter turn short circuit is built by using MATLAB/Simulink simulation platform. Hysteresis current vector control method is adopted in the closed – loop control state, including speed loop PI controller, anti Park transform and PWM modulation system. In the model of permanent magnet synchronous motor with fault, the external parameter input can be used to determine whether the motor has fault, and the output results of PMSM in the open–loop and closed–loop control state are analyzed respectively when the motor is in normal operation and when the fault occurs. The experimental results are consistent with the theoretical calculation results, which provides a reliable basis for the future research on the inter turn short circuit fault of permanent magnet synchronous motor.

[Key words] Permanent magnet synchronous motor; turn to turn short circuit; vector control; PWM modulation; anti-Park transform

### 0 引 言

由于现代燃油汽车的大量使用,其排放的尾气是 导致全球环境受污染的原因之一,并且消耗了大量的 自然资源。为了更好做到节能减排的效果,电动汽车 的投入成为汽车市场的主流方向。永磁同步电机因 其尺寸小、效率高、重量轻、噪声小、高功率密度、工作 可靠等一系列性能特点,是电动汽车电机的最优选 则<sup>[1-2]</sup>。但是,由于 PMSM 常运行在振动、高低温、湿 度、粉尘等环境复杂情况下,再加上电机频繁起动、加 速、减速等因素都可能导致电机发生故障<sup>[3]</sup>。永磁同 步电机故障大致可分为3类:机械故障、电气故障和 永磁体故障。定子匝间短路是 PMSM 电气故障和 全概率最高的故障,这使得电机绕组温度升高,从而 导致绝缘失效,严重时则会影响永磁同步电机的安全 运行以及使用寿命<sup>[4-5]</sup>。自 80 年代以来,各种新型的 故障检测方法不断提出,目前最为广泛使用的是有限 元分析法和参数辨识法等,但上述方法存在需要大量 的算法以及附加设备等问题<sup>[6]</sup>。本文在 abc 坐标系 中分别建立了正常的和带有匝间短路故障的永磁同 步电机模型,对比二者的区别,查找故障发生相,并在 MATLAB/simulink 仿真平台中,对电机正常时以及发 生故障时进行仿真实验,对其数据进行对比分析。

### 1 正常与匝间短路下的 PMSM 数学模型

如图 1 所示,假设故障发生在 A 相,故障绕组 中含有一个短路回路,则该相绕组可以分为二部分: 一相是正常部分  $a_1$ ,一相是故障部分  $a_2$ , $R_f$  为短路 支路的短路电阻, $i_f$  为短路电流<sup>[7-8]</sup>。

根据图 1 建立的 PMSM 数学模型如下:

$$V_{\text{abef}} = Rs_{\text{abef}} \cdot i_{\text{abef}} + L_{\text{abef}} \cdot Pi_{\text{abef}} + e_{\text{abef}}.$$
 (2)

基金项目:国家自然科学基金(51867006)。

**作者简介:**周光亮(1995-),男,硕士研究生,主要研究方向:电机故障诊断、控制理论与应用;吴钦木(1975-),男,博士,教授,硕士生导师,主要研究方向:控制理论与应用、运动控制、电机效率优化控制等。

通讯作者:吴钦木 Email:wqm-watlei@163.com



#### 图1 带有匝间短路的 PMSM 绕组电路图

Fig. 1 Circuit diagram of PMSM winding with inter turn short circuit

$$R_{abef} = \begin{cases} \dot{\mathbf{g}}_{a1}^{R} + R_{a2} & 0 & 0 & -R_{a2} & \dot{\mathbf{y}} \\ \dot{\mathbf{e}} & 0 & R_{b} & 0 & 0 & \dot{\mathbf{u}} \\ \dot{\mathbf{e}} & 0 & 0 & R_{c} & 0 & \dot{\mathbf{u}} \\ \dot{\mathbf{g}} & -R_{a2} & 0 & 0 & R_{a2} + R_{f} \dot{\mathbf{y}} \\ \dot{\mathbf{g}} & \psi_{a} = \psi_{f} \cos\theta + \psi_{ih} \cos(i\theta) , \\ \dot{\mathbf{f}} \psi_{b} = \psi_{f} \cos(\theta - 2\pi/3) + \psi_{ih} \cos(i\theta) , \quad (5) \\ \dot{\mathbf{f}} \psi_{c} = \psi_{f} \cos(\theta + 2\pi/3) + \psi_{ih} \cos(i\theta) . \end{cases}$$

式中,  $R_f$  为定子相电阻; L 为自感系数; M 为互感系数; P 为微分算子;  $\Psi_a$ 、 $\Psi_b$ 、 $\Psi_c$ 、 $\Psi_f$  分别为电机三项磁链和磁链基波分量幅值;  $\Psi_{ih}$  为磁链 i 次谐波分量幅值(i = 0, 1, 2, 3...);  $\theta$  为磁链矢量角<sup>[9]</sup>。

电机在正常工作状态时:

$$R_{\rm a1} + R_{\rm a2} = R_{\rm b} = R_{\rm c} = Rs, \qquad (6)$$

$$L_{a1} + L_{a2} + 2M_{a1}M_{a2} = L_b = L_c,$$
(7)

$$M_{a1b} + M_{a2b} = M_{a1c} + M_{a2c} = M_{bc}, \qquad (8)$$

$$e_a = e_{a1} + e_{a2} = e_b = e_c, (9)$$

$$e_{\rm f} = -e_{\rm a}.$$
 (10)

将(3)、(4)式带入到(2)式中:

$$V_{a} = (R_{a1} + R_{a2})i_{a} - R_{a2} \cdot i_{f} + (L_{a1} + L_{a2} + 2M_{a1}M_{a2}) \cdot Pi_{a} + (M_{a1b} + M_{a2b}) \cdot Pi_{b} + (M_{a1c} + M_{a2c}) \cdot Pi_{c} - (L_{a2} + M_{a1a2}) \cdot Pi_{f} + e_{a}.$$
(11)

在正常情况下,  $a_1, a_2$  均通过  $i_a$  的电流,当发生 故障时,流过  $a_1$  的电流为  $i_a$ 。由于  $i_a + i_b + i_c = 0$ ,此 时流过  $a_2$  的电流应为  $i_a - i_{f^{\circ}}$  因此,式(11) 中( $L_{a2} + M_{a1a2}$ ) ×  $Pi_f$ 项的作用为减去这部分电流所带来的电 压。将式(11) 化简为:

$$V_{a} = Rs \cdot i_{a} + (L_{a} - M_{ab}) \cdot Pi_{a} + e_{a} - [R_{a2} \cdot i_{f} + (L_{a2} + M_{a1a2}) \cdot Pi_{f}]$$
(12)

$$M_{a1c} + M_{a2c} - (L_{a2} + M_{a1a2}) \, \dot{\mu} \\
 M_{bc} - M_{a2b} \, \dot{\mu} \\
 L_{c} - M_{a2c} \, \dot{\mu} \\
 - M_{a2c} \, L_{a2} \, \dot{\mu} \\
 式(12) 可以拆分为二个部分:$$
(3)

$$\mathbf{X} \cdot \mathbf{L}_a + (\mathbf{L}_a - \mathbf{M}_{ab}) \cdot \mathbf{\Gamma} \mathbf{L}_a + \mathbf{e}_a, \tag{13}$$

$$- \left[ K_{a2} \cdot i_f + \left( L_{a2} + M_{a1a2} \right) \cdot P i_f \right].$$
(14)

式(13)为电机正常运行时的部分,式(14)为电机发生故障时出现的部分。

### 2 故障相分析

在故障发生之前,电机参数是对称平衡的,发生 故障之后,平衡被打破,为了方便分析,引入旋转坐 标矩阵:

$$T = \begin{cases} \dot{e} \cos\theta & \cos(\theta - 2\pi/3) & \cos(\theta + 2\pi/3) & 0 \ \dot{\mu} \\ \dot{e} - \sin\theta & -\sin(\theta - 2\pi/3) & -\sin(\theta + 2\pi/3) & 0 \ \dot{\mu} \\ \dot{e} \ 1/2 & 1/2 & 1/2 & 0 \ \dot{\mu} \\ \dot{e} \ 0 & 0 & 0 & 3/2 \ \dot{H} \\ (15) \end{cases}$$

通过旋转变换,电机的电压方程为:

$$\begin{split} \hat{\mathbf{g}}^{e_{df}} \dot{\mathbf{y}} &= \frac{2}{3} \eta \hat{\mathbf{g}}^{e_{df}} \frac{R_{\text{scos}}(\theta_{i_{f}}) + L_{d} P[\cos(\theta_{i_{f}})] + \omega L_{q} \sin(\theta_{i_{f}})]}{\hat{\mathbf{g}} - R_{\text{scos}}(\theta_{i_{f}}) - L_{q} P[\sin(\theta_{i_{f}})] + \omega L_{d} \cos(\theta_{i_{f}})] \mathbf{y}}. \end{split}$$

$$(17)$$

式中, $\omega$ 为基波角频率, $e_{df}$ 、 $e_{df}$ 为电机发生故障情况 下的反电动势额外分量。故式(16)可以拆分为式 (18)、(19)两项:

$$\hat{g}^{Rs} + PL_{d} - \omega L_{q} \stackrel{`}{\not{}} \stackrel{'}{\theta} \hat{g}^{i}_{d} \stackrel{`}{\theta} \\ \hat{g}^{i}_{d} \omega L_{d} \qquad Rs + PL_{q} \stackrel{`}{\theta} \hat{g}^{i}_{d} \stackrel{`}{\theta} \\ \hat{g}^{i}_{d} \stackrel{'}{\theta} \stackrel{'}{\theta} , \qquad (18)$$

$$\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{\text{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}{\overset{ge}_{df}}}{\overset{ge}_{df}}}}}}}}}}}}}}}}}}}}}}}}}}$$

对比式(13)、(14)以及式(18)、(19)可得知, 式(14)和式(19)中包含了故障信息。

### 3 仿真实验及对比分析

为了便于在 MATALB/simulink 仿真平台中搭 建故障电机模型,引入参数 $\eta,\eta = n/n_1$ 。 $\eta$ 为短路 相总匝数n与该相短路匝数 $n_1$ 的比值,简称短路匝 数比。将其带人式(3)、(4)则为:

$$L_{abef} = \begin{cases} \oint L_{a1} + L_{a2} + 2M_{a1}M_{a2} & M_{a1b} + M_{a2b} & M_{a1e} + M_{a2e} & -\eta (L_{a2} + M_{a1a2}) \dot{y} \\ \hat{e} & M_{a1b} + M_{a2b} & L_{b} & M_{bc} & -\eta M_{a2b} & \dot{u} \\ \hat{e} & M_{a1e} + M_{a2e} & M_{be} & L_{c} & -\eta M_{a2e} & \dot{u} \\ \hat{f} & -\eta (L_{a2} + M_{a1a2}) & -\eta M_{a2b} & -\eta M_{a2e} & \eta L_{a2} & \dot{y} \end{cases}$$
(20)

$$R_{abef} = \begin{cases} \hat{\mathbf{g}} R_{a1} + R_{a2} & 0 & 0 & -\eta Rs \\ \hat{\mathbf{e}} & 0 & R_b & 0 & 0 \\ \hat{\mathbf{e}} & 0 & 0 & R_c & 0 \\ \hat{\mathbf{e}} & 0 & 0 & R_c & 0 \\ \hat{\mathbf{g}} & -\eta Rs & 0 & 0 & \eta Rs + R_f \\ \end{cases}$$
(21)

转矩方程式为:

$$T_{e} = \frac{e_{a}i_{a} + e_{b}i_{b} + e_{c}i_{c} - e_{f}i_{f}}{\omega_{e}/n_{p}} = -n_{p}i_{abcf} \cdot [\sin\theta \cdot \sin(\theta - 2\pi/3) \cdot \sin(\theta + 2\pi/3) - \eta\sin\theta]^{\mathrm{T}}.$$
 (22)  
PMSM 参数设定见表 1.

3.1 闭环状态仿真分析

闭环控制采用*i<sub>a</sub>* = 0的滞环电流控制方法,其基本思想是:将电流给定信号与检测到逆变器实际输出电流信号作比较。若实际电流值大于给定值,则通过

改变逆变器的开关状态使电流减小,反之增大。因此,实际电流围绕给定电流波形做锯齿形变化,并将 偏差限制在一定范围内。为了达到预想结果,采用的 滞环电流控制的逆变器系统包括一个转速控制环和 一个采用 Bang-Bang 控制(滞环控制)的电流闭 环<sup>[10]</sup>。滞环电流矢量控制模型如图2所示。

#### 表1 PMSM 参数设定

#### Tab. 1 PMSM parameter setting

| 电机参数                                                              | 数值      |
|-------------------------------------------------------------------|---------|
| 极对数 P <sub>n</sub>                                                | 3       |
| 每相电阻 $R_s / \Omega$                                               | 1.5     |
| 相电感 L/ mH                                                         | 1.745   |
| 相互感 M/ mH                                                         | 0.038   |
| 永磁铁磁链 $\Psi_a$ /Wb                                                | 0.175   |
| 摩擦系数 B <sub>m</sub> / (N・m・rad <sup>-1</sup> ・sec <sup>-1</sup> ) | 0.001   |
| 转动惯量 J/ (kg・m <sup>2</sup> )                                      | 0.003 5 |



#### 图 2 PMSM 滞环电流矢量控制图

Fig. 2 PMSM hysteresis current vector control diagram

### 3.1.1 无故障状态 (η = 0)

通过对有关 PMSM 匝间短路故障文献的研究 发现,电机若是发生匝间短路,则会影响到短路相电 流的幅值。假设 A 相发生匝间短路,为了便于清晰 观测 A 相电流的情况以及后续的分析,将三相电流 分别用 3 个示波器显示。设置短路匝数比  $\eta = 0$ ,负 载转矩  $T_1 = 10$  N·m,转速 n = 3000 r,在 MATLAB/ simulink 仿真平台中进行模拟实验。

从图 3 可以看出,当电机无故障发生时,电机的 A 相电流平稳,没有突变现象,此时故障电流  $i_f = 0$ , 如图 5 所示。对  $i_a$  做快速傅里叶变化(FFT) 仿真分 析,数据见表 2。



### 表 2 闭环无故障时 A 相电流谐波幅值占基波百分比

 Tab. 2
 Percentage of harmonic amplitude of phase a current to fundamental wave when there is no fault in closed loop

| 谐波序列 | 0    | 1    | 2    | 3    | 4    | 5    | 6    |
|------|------|------|------|------|------|------|------|
| %    | 0.06 | 0.08 | 0.05 | 0.04 | 0.04 | 0.07 | 0.01 |

### 3.1.2 有故障状态 $(\eta \neq 0)$

当 A 相发生匝间短路故障时,只需对电机模型 中的  $\eta$  和  $R_f$  赋值,就可模仿电机匝间短路故障。令  $\eta = 1.3$   $R_f = 5 \Omega$  (0.2 s)时加入故障信号进行仿真。



#### Fig. 6 Motor fault current when adding fault

从图 5 和图 6 中可以看出,当在 0.2 s 加入故障 之后,电机的 A 相电流发生突变并且出现故障电 流,由此判断故障发生。此时对电机的 A 相电流做 快速傅里叶变化(FFT)仿真分析,数据见表 3。

表 3 闭环发生故障时 A 相电流谐波幅值占基波百分比

Tab. 3 Percentage of harmonic amplitude of phase a current to fundamental wave in case of closed loop fault

| 谐波序列 | 0    | 1    | 2    | 3    | 4    | 5    | 6    |
|------|------|------|------|------|------|------|------|
| %    | 0.88 | 0.24 | 0.73 | 0.75 | 0.54 | 0.42 | 0.34 |

### 3.2 开环状态仿真分析

当 PMSM 的三相输入端直接加三相对称电压 作开环运行,并稳定在 3 000 r/min,对得到的电流 进行分析,其结果如下:

3.2.1 无故障情况 (η = 0)

开环状态下,设置短路匝数比 $\eta = 0$ ,负载转矩  $T_1 = 10$  N·m,转速 n = 3 000 r,在 MATLAB/ simulink 仿真平台中进行模拟实验,结果如图 7 所 示。

对电机的 A 相电流做快速傅里叶变化(FFT) 仿 真分析,数据见表 4。



Fig. 7 Phase a current without fault

表 4 开环无故障时 A 相电流谐波幅值占基波百分比

Tab. 4 Percentage of harmonic amplitude of phase a current to fundamental wave without fault in open loop

| 谐波序列 | 0    | 1    | 2    | 3    | 4    | 5    | 6    |
|------|------|------|------|------|------|------|------|
| %    | 0.83 | 1.05 | 0.73 | 0.49 | 0.37 | 0.29 | 0.25 |

3.2.2 有故障情况  $(\eta \neq 0)$ 

设置电机的匝间短路比  $\eta = 1.3, R_f = 5 \Omega, 0.2$  s 时加入故障信号进行仿真。

由图 8、图 9 中可以看出,当 0.2 s 加入故障时, 伴随着故障电流 *i*<sub>f</sub> 的出现, A 相电流发生突变,由此 可以判断,故障发生。对电机的 A 相电流做快速傅 里叶变化(FFT) 仿真分析,数据见表 5。



Tab. 5 Percentage of harmonic amplitude of phase a current to

fundamental wave when open-loop fault occurs

| 谐波序列 | 0    | 1    | 2    | 3    | 4    | 5    | 6    |
|------|------|------|------|------|------|------|------|
| %    | 1.44 | 3.43 | 3.07 | 3.94 | 2.15 | 2.32 | 1.66 |

## 3.3 开、闭环状态时的谐波对比分析

PMSM 处于闭环和开环状态,将未发生匝间短路故障与发生匝间短路故障时的 A 相电流谐波幅值占基波百分比进行对比,结果见表 6。

表 6 开、闭环时 A 相电流谐波幅值占基波百分比对比

Tab. 6 Comparison of percentage of harmonic amplitude of phase a current to fundamental wave in open and closed loop

| 谐波 | 序列 | 0    | 1    | 2    | 3    | 4    | 5    | 6    |
|----|----|------|------|------|------|------|------|------|
| 开环 | 正常 | 0.83 | 1.05 | 0.73 | 0.49 | 0.37 | 0.29 | 0.25 |
|    | 故障 | 1.44 | 3.43 | 3.07 | 3.94 | 2.15 | 2.32 | 1.66 |
| 闭环 | 正常 | 0.06 | 0.08 | 0.05 | 0.04 | 0.04 | 0.07 | 0.01 |
|    | 故障 | 0.88 | 0.24 | 0.73 | 0.75 | 0.54 | 0.42 | 0.34 |

从表6中可见、PMSM 无论是处于开环还是闭 环状态,  $\eta = 1.3$  时的 A 相电流谐波幅值占基波百分 比总是比0时大。这说明谐波的产生完全是由故障 的出现而导致,与电机的控制状态无关。将开环控 制下的 PMSM 与闭环控制时相比,对比观察图 3、 图 7和图 11、13 可发现,由于开环控制失去了对电 流的反馈调节部分,因此无论是在电机正常运行时 还是在发生匝间短路故障时,开环控制下的 A 相电 流波动范围一定大于闭环控制。所以,在对比同样 的谐波序列时,开环时的 A 相电流谐波幅值占基波 百分比总是大于闭环时。在对永磁同步电机做故障 诊断的时候,如果谐波成分越明显,那么越有利于去 判别故障的发生相以及故障程度。借助表6中的数 据为参考,在对电动汽车的 PMSM 进行匝间短路故 障分析时,选择离线检测方案比在线检测方案更为 明显有效。

### 4 结束语

当永磁同步电机发生匝间短路故障时,通过以 上的研究分析可以得到以下结论:

- (1)发生匝间短路的那一相的相电流会增大;
- (2)当发生匝间短路故障时,会伴随着较为明

### (上接第55页)

- [5] BRAUN M R, ALTAN H, BECK S B M. Using regression analysis to predict the future energy consumption of a supermarket in the UK[J]. Applied Energy, 2014, 130(5):305-313.
- [6] Janelle S. Hygh, Joseph F. DeCarolis, David B. Hill, S. Ranji Ranjithan, Multivariate regression as an energy assessment tool in early building design, Building and Environment, 57(2012), 165 –175.
- [7] 孙斌,蒋能飞.人工神经网络在预测热舒适性指标中的应用[J]. 土木建筑与环境工程,2011,33(S1):130-133.
- [8] 陆烨,朱其新,周敬松,等. 一种基于 PSO-RBF 网络算法的热舒 适性指标预测新方法[J]. 苏州科技大学学报(自然科学版), 2020,37(1):73-78.

显的短路电流出现;

(3)故障相电流的谐波会增大,且与电机的控 制状态无关;

(4) 对于电动汽车的 PMSM 匝间短路故障诊断,离线检测方案更为明显有效。

在对 PMSM 匝间短路故障研究分析中,可以得 知电机的故障信息包含在式(14)、(19)中。对于故 障信息是如何导致电机出现故障现象以及故障程 度,还有待于进一步的研究分析。

### 参考文献

- [1] 郑长明,张加胜. 基于最小阶扰动估计的永磁同步电机离散比例-积分准滑模控制[J]. 电工技术学报,2018,33(24):5711-5719.
- [2] 寇宝泉,赵晓坤,王梦瑶,等. 反凸极永磁同步电机及其控制技 术综述[J]. 中国电机工程学报,2019,39(8):2414-2425.
- [3] SWARNAKAR S, MUKHOPADHYAY S, KASTHA D. Fault detection and remedial strategies for inter-turn short circuit faults in a permanent magnet brushless dc motor [C]//2005 Annual IEEE India Conference-Indicon. IEEE, 2005: 492-496.
- [4] 刘毅,郑志国. 基于参数模型永磁同步电机定子绕组匝间短路 故障研究[J]. 电机与控制应用,2015,42(10):48-54.
- [5] 汪鑫,王艳,纪志成. 基于改进 ELM 的永磁同步电机故障诊断 算法[J].系统仿真学报,2017,29(3):646-653.
- [6] 张明. 基 Maxwell 2D 的 UUV 容错推进电机匝间短路故障研究[J]. 微特电机,2014,42(11): 29-31.
- [7] ROMERAL L, URRESTY J C, RIBA R J C, et al. Modeling of surface-mounted permanent magnet synchronous motors with stator winding interturn fault [ J ]. IEEE Transaction on Industrial Electronics, 2011,58(5):1576.
- [8] 王延峰,赵剑锷,黄建波,等. 永磁同步电机定子匝间短路故障 阻抗参数分析[J]. 电机与控制应用,2017,44(2):105-109.
- [9] 陈慧丽,李杰永. 磁同步电机匝间短路故障检测技术研究[J].
   微特电机,2017,1004-7018(9)-0041 08.
- [10] 袁雷, 胡冰新, 魏克银, 等. 现代永磁同步电机控制原理及 MATLAB 仿真[M]. 北京:北京航空航天大学出版社, 2016.
- [9] 朱婵,张光建.基于禁忌遗传神经网络的热舒适度预测模型研究 [J]. 建筑节能,2019,47(12):41-44,144.
- [10] YAOLIN L, SHIQUAN Z, WEI Y, et al. Design Optimization Considering Variable Thermal Mass, Insulation, Absorptance of Solar Radiation, and Glazing Ratio Using a Prediction Model and Genetic Algorithm[J]. Sustainability, 2018, 10(2):336.
- [11] HÉNON M. The Monte Carlo method [J]. Astrophysics & Space Science, 1971, 14(1):151-167.
- [12] ASADI S, AMIRI S S, MOTTAHEDI M. On the Development of Multi-Linear Regression Analysis to Assess Energy Consumption in the Early Stages of Building Design [J]. Energy & Buildings, 2014, 85:246-255.