文章编号: 2095-2163(2021)05-0043-05

中图分类号: TP273 文献标志码: A

基于误差反馈的自导飞行装置自动控制系统设计

邓 异,周 勇

(中国人民解放军 91640 部队, 广东 湛江 524064)

摘 要:为了提高某型自导飞行装置的自动化控制能力,提出基于误差反馈的自导飞行装置自动控制系统设计方法。采用误 差反馈和末端姿态视觉参数识别方法,构建自导飞行装置的控制参数采集模型,结合对自导飞行装置的运动学和力学模型分 析,建立自导飞行装置的运动学方程,采用惯导误差反馈和自适应补偿方法,建立自导飞行装置控制系统的控制律。通过末 端姿态调整和多传感信息跟踪融合方法,实现对自导飞行装置的模糊控制算法设计。采用集成 DSP 芯片作为自导飞行装置 控制系统的集成处理器,结合嵌入式和集成电路设计方法,实现自导飞行装置自动化控制系统设计。测试结果表明,设计的 自导飞行装置控制系统稳定性较好,鲁棒性较高,提高了目标命中率。 关键词:自导飞行装置;自动控制;误差反馈;系统设计

Design of automatic control system for homing flight device based on error feedback

DENG Yi, ZHOU Yong

(No.91640 Troops of PLA, Zhanjiang Guangdong 524064, China)

[Abstract] In order to improve the automatic control ability of a certain type of homing flying device, a design method of automatic control system for homing flying devicebased on error feedback is proposed. Using error feedback and terminal attitude visual parameter identification method, the control parameter acquisition model of homing flight device is established. Combining with the kinematics and mechanical model analysis of homing flight device, the kinematics equation of homing flight device is established, and the control law of homing flight device control system is established by inertial navigation error feedback and adaptive compensation method. The fuzzy control algorithm of homing flight device is designed by the method of terminal attitude adjustment and multi-sensor information tracking and fusion. The integrated DSP chip is used as the integrated processor of the control system of the homing flight device, and the design of the automatic control system of the homing flight device is realized by combining the embedded and integrated circuit design methods. The test results show that the designed control system of homing flight device has good stability and robustness, and improves the target hit rate.

[Key words] self-guided flying device; automatic control; error feedback; system design

0 引 言

自导飞行装置是通过自动化的控制系统,实现自 主导引和飞行控制的飞行器,常见的自导飞行装置主 要是导弹,随着自动化控制技术的发展,对自导飞行 装置的飞行稳定性和控制健壮性提出了更高的要求, 通过优化控制,提高飞行稳定性的同时,提高对目标 的命中率,研究自导飞行装置的自动化控制方法,在 舰载导弹的控制设计中具有重要的应用价值^[1]。

对舰载导弹这类自导飞行装置控制过程中,受到 飞行扰动和干扰磁场等因素的影响,导致舰载导弹的 飞行稳定性不好,需要研究优化的自导飞行装置自动 控制系统,结合控制律的优化设计,提高自导飞行装 置自动控制的自适应性和环境适应性^[2-3]。对此,本 文提出基于误差反馈的自导飞行装置自动控制系统 设计方法。采用误差反馈和末端姿态视觉参数识别 方法,构建自导飞行装置的控制参数采集模型,结合 对自导飞行装置的运动学和力学模型分析,建立自导 飞行装置的运动学方程,采用惯导误差反馈和自适应 补偿方法,建立自导飞行装置控制系统的控制律^[4]。 通过末端姿态调整和多传感信息跟踪融合方法,实现 对自导飞行装置的模糊控制算法设计。最后进行系 统的硬件设计和测试,展示了本文方法在提高自导飞 行装置自动控制能力方面的优越性能。

1 自导飞行器控制对象模型和运动学分析

1.1 自导飞行器控制对象模型

本文研究的自导飞行器为舰载导弹,构建自导

作者简介:邓 异(1977-),男,学士,高级工程师,主要研究方向:制导控制系统;周 勇(1975-),男,学士,高级工程师,主要研究方向:制导 与控制。

飞行装置的控制参数采集模型,结合对自导飞行装置的运动学和力学模型分析进行运动学模型设计,本文假定导弹自导飞行装置纵向运动是对称的^[5],而且在纵向运动时,采用自变量和控制约束参量联合分析的方法,得到自导飞行装置末端姿态偏移的约束参量为 x_1, x_2, \cdots, x_n ,得到导弹的纵向运动方程组如式(1)到式(8):

$$m \frac{dV}{dt} = P \cos \alpha - X - mg \sin \theta, \qquad (1)$$

$$mV\frac{d\theta}{dt} = P\sin\alpha + Y - mg\cos\theta,$$
 (2)

$$J_z \frac{d\omega_z}{dt} + (J_y - J_x)\omega_y\omega_x + J_{xy}(\omega_y^2 - \omega_x^2) = M_z, (3)$$

$$\frac{dx}{dt} = V\cos\theta,\tag{4}$$

$$\frac{dy}{dt} = V \sin\theta, \qquad (5)$$

$$\frac{d\vartheta}{dt} = \omega_z, \qquad (6)$$

$$\alpha = \vartheta - \theta, \tag{7}$$

$$\delta_{z} = f(e_{1}). \tag{8}$$

其中, θ 为自导飞行装置的弹道倾角,速度矢 量(Ox_2 轴)与水平面间的夹角; ϑ 为自导飞行装置 的俯仰角,导弹的纵轴(Ox_1 轴)与水平面(Oxy 平 面)间的夹角; α 为自导飞行装置的攻角; x,y 为自 导飞行装置质心位置; ω_x, ω_y 为自导飞行装置分别 绕体坐标系 Ox_1, Oy_1 轴的角速度; δ_z 为自导飞行装 置的俯仰舵偏角; e_1 为自导飞行装置的系统误差; m 为自导飞行装置质量;X,Y 为作用在自导飞行装 置的阻力、升力、侧向力; M_z 为自导飞行装置的俯仰 力矩; J_z 为自导飞行装置的旋转体坐标系各轴的转动惯 量; J_{xy} 为自导飞行装置的旋转体坐标系 Oz_1 的惯性 积; $\frac{dV}{dt}$ 为自导飞行装置的投影; $V\frac{d\theta}{dt}$ 为自导飞行装 置在铅垂面 Ox_2y_2 内沿弹道法线(Ox_2 轴)上投影, 称法向加速度; $\frac{d\omega_z}{dt}$ 为自导飞行装置的体坐标系 $Ox_1y_1z_1$ 轴上的分量。

1.2 导弹射程预测

根据自导飞行装置的飞行特点,自导飞行装置 弹道可以分为 S-转弯弹道、搜索弹道和航向校正等 飞行 控制 模式,自导飞行装置的航向角偏差 $|\Delta\psi_{HAC}| \leq 5^{\circ}$,此时可以忽略自导飞行装置的纵向 飞行的航向角偏差,得到自导飞行装置射程为:

$$R_p = R_{TAN} + \frac{R_{HAC}\psi_H}{\cos 30^\circ} - X_{HAC}, \qquad (9)$$

采用解析法求取模型参数,在小扰动约束下,得 到自导飞行装置的航向角偏差 $|\Delta \psi_{HAC}| > 5^{\circ}$ 时, 有:

$$R_{p} = R_{TURN} + \frac{R_{HAC}\psi_{H}}{\cos 30^{\circ}} - X_{HAC}, \qquad (10)$$

其中:

$$R_{TURN} = \frac{R_{TAC} \left| \Delta \psi_{HAC} \right|}{\cos \varphi} + \sqrt{A^2 + B^2}, R_{TAC} = \frac{v_2 \cos \gamma}{g \tan \varphi}, (11)$$

根据末端姿态的视觉信息参数分析方法,进行 自导飞行装置末端姿态偏移的空间规划,航向校正 飞行段的预测射程:

$$R_p = \frac{R_{HAC}\psi_H}{\cos 30^\circ} - X_{HAC}, \qquad (12)$$

建立自导飞行装置误差反馈跟踪融合控制模型,根据自导飞行装置的弹道分布,得到滑翔段的预测射程为:

$$R_{p} = \sqrt{x^{2} + y^{2}}.$$
 (13)

根据射程预测结果,建立自导飞行装置的运动 学方程,采用惯导误差反馈和自适应补偿方法,建立 自导飞行装置控制系统的控制律^[6]。

2 控制律设计及收敛性分析

结合自导飞行装置规划和操作运动规划模型, 得到自导飞行装置控制律,采用误差反馈和稳定性 调节的方法,构建非线性自适应反演积分控制模 型^[7],构建参数调整和自适应规划模型,结合自导 飞行装置末端姿态偏移,得到俯仰角度跟踪误差:

$$e_1 = \vartheta - \vartheta_r, \qquad (14)$$

根据惯性误差反馈方法,构建自导飞行装置的 自适应参数调节模型,得到自导飞行装置的俯仰角 误差:

$$\dot{e}_1 = \omega_2 - \vartheta_r, \qquad (15)$$

引入解析法和寻优控制方法,得到自导飞行装置末端姿态调节的稳定函数为:

$$\omega_{2r} = -c_1 e_1 + \vartheta_r - \lambda_1 \zeta_1. \tag{16}$$

其中, c_1 、 λ_1 均大于 0。同时, 为增强自导飞行 装置的航向抗鲁棒性, 引入积分项 ζ_1 , 定义导弹可 靠性控制的积分项 $\zeta_1 = \int_0^t e_1(\tau) d(\tau)$ 。

采用联合参数寻优识别的方法,得到自导飞行 装置射程内的角速度跟踪误差为:
$$\begin{split} e_2 &= \omega_2 - \omega_{2r} = \omega_2 + c_1 e_1 + \lambda_1 \zeta_1 - \vartheta_r, \ (17) \\ &$$
 联合求解可得:

 $\dot{e}_1 = e_2 - c_1 e_1 - \lambda_1 \zeta_1.$ (18) 选择 Lyapunov 函数进行稳定性分析,表示为:

$$V_1 = \frac{1}{2} e_1^{2}, \qquad (19)$$

采用积分控制,对 Lyapunov 函数进求导:

$$\dot{V}_1 = e_1 e_2 - c_1 e_1^2 - e_1 \lambda_1 \zeta_1, \qquad (20)$$

采用联合参数寻优,构建自导飞行装置联合控制律,求导得到:

$$\dot{e}_2 = \dot{\omega}_2 - \dot{\omega}_{2r}, \qquad (21)$$

有:

 $e_2 = \alpha V^2 + mg(\sin\vartheta + V\omega_2) + m(\cos\vartheta + \omega_2)$

 $V\omega_{2}) + c_{1}e_{2} + \lambda_{1}e_{1} - c^{2}_{1}e_{2} - c_{1}\lambda_{1}\zeta_{1} - \vartheta_{r}, (22)$ 根据 Lyapunov 稳定性判据,得到:

$$V_2 = V_1 + \frac{1}{2}e_2^2, \qquad (23)$$

求导:

$$\dot{V}_2 = \dot{V}_1 + e_1 \dot{e}_2, \qquad (24)$$

构建自导飞行装置末端姿态偏移控制的测量模型,代入有:

$$\begin{split} \dot{V}_2 &= e_1 \dot{e}_2 - c_1 e_2^2 - \lambda_1 \zeta_1 e_1 + e_2 \left[\alpha V^2 + mg(\sin\vartheta + V\omega_2) + m(\cos\vartheta + V\omega_2) + c_1 e_2 + \lambda_1 e_1 - c_1^2 e_2 - c_1 \lambda_1 \zeta_1 - \ddot{\vartheta}_r \right], \end{split}$$

为获得期望的稳定特性,通过末端姿态调整和 多传感信息跟踪融合方法,选择舵角参考输入参数, 结合空间参数联合寻优,得到自导飞行装置末端姿 态控制模型:

$$\vartheta_r = -\hat{\delta}(\alpha V^2 + mg(\sin\vartheta + V\omega_2) + m(\cos\vartheta + \omega_2))$$

$$\dot{\delta} = \varepsilon_1 \alpha V^2 e_2, \qquad (27)$$

代入自适应律,采用联合参数寻优,得到:

$$\dot{V}_3 = -c_1 e_1^2 - c_2 e_2^2 \le 0, \qquad (28)$$

根据收敛性判断,可知:

$$\lim_{t \to \Psi} e_1 = \lim_{t \to \Psi} e_2 = 0.$$
 (29)

综上分析,实现对自导飞行装置的可靠性控制, 根据收敛性判断,得到设计的自导飞行装置控制律 是渐进收敛的^[8-10]。

3 系统硬件设计与实现

采用集成 DSP 芯片作为自导飞行装置控制系统的集成处理器,结合嵌入式和集成电路设计方法, 实现自导飞行装置自动化控制系统设计,系统主要 有自导飞行装置控制信号信息采集模块、集成控制 模块、AD 模块、上位机通信模块、复位电路模块以 及人机交互接口模块等,通过模块化电路设计方法, 实现对自导飞行装置自动控制系统的集成设计。控 制系统的设计结构如图 1 所示。

根据图 1 的设计结构,采用集成电路设计,在 DC-DC 转换器中构建自导飞行装置控制输出终端, 得到系统硬件结构如图 2 所示。

图 1 系统设计结构框架 Fig. 1 System design framework

4 系统测试

为了验证本文设计系统的可靠性,进行实验测 试,设定控制结构参数 $\lambda_1 = 1, \lambda_2 = 1, c_1 = 2, c_2 = 2$, 自适应调节系数 $\hat{\delta}_0 = -15$,模糊度参数 $\varepsilon_1 = 0.1$,控 制指令传输的时长为 120 s,根据上述参数设定,进 行导弹控制仿真测试,得到俯仰角跟踪控制输出曲 线如图 3 所示。

分析图 3 得知,本文方法进行导弹控制的跟踪 性能较好,测试角速度参数控制效能,得到结果如图 4 所示。

分析图 4 得知,本文方法进行导弹控制的角速 度输出稳定性较好,测试输出误差,得到测试结果如 图 5 所示。

分析图 5 得知,本文方法进行自导飞行装置控制的误差收敛性较好,跟踪误差能快速收敛到 0,提

5 结束语

本文提出基于误差反馈的自导飞行装置自动控 (下转第52页)