文章编号: 2095-2163(2022)04-0015-10

中图分类号: TP301.6 文献标志码: A

基于全局帕德逼近的米塔-列夫勒函数及其导数的数值算法

方宇孟,袁 晓,谢雨婧

(四川大学 电子信息学院,成都 610065)

摘 要: 米塔-列夫勒函数类在分数阶微积分中起着非常重要的作用,是应用非常广泛的一类特殊函数。针对米塔-列夫勒 函数及其导数的高精度计算问题,提出一种基于全局帕德逼近的数值算法。该算法从泰勒级数和渐进级数出发,构造有理多 项式分式,实现双参数米塔-列夫勒函数 $E_{\alpha,\beta}(x)(x \le 0)$ 及其任意阶导数 d' $E_{\alpha,\beta}(x)/d(x)$ '($s \in \mathbb{N}^*$)的逼近。通过调节逼近 阶数,获得最佳的稳定性和精度。将数值解与解析解做对比,通过 Matlab 仿真实验证明了算法的运算有效性和可行性,数值 求解结果稳定可靠,逼近性能优越。

关键词:分数微积分;特殊函数;近似算法;全局帕德逼近;分数阶信号分析

Numerical algorithm of Mittag-Leffler functions and its derivatives based on global Padé approximation

FANG Yumeng, YUAN Xiao, XIE Yujing

(College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China)

[Abstract] The class of Mittag–Leffler functions plays a very important role in fractional calculus and is a widely used class of special functions. Aiming at the high precision calculation of Mittag–Leffler functions and their derivatives, a numerical algorithm based on global Padé approximation is proposed. Starting from Taylor series and asymptotic series, the algorithm constructs rational fractions to approximate the two–parametric Mittag–Leffler function $E_{\alpha,\beta}(x)$ ($x \le 0$) and its arbitrary derivatives $d^s E_{\alpha,\beta}(x)/d(x)^s$ ($s \in \mathbb{N}^*$). The approximation order can be adjusted to obtain the best stability and accuracy. Comparing the numerical solution with the analytic solution, the Matlab simulation results show that the algorithm is effective and feasible, the numerical solutions are stable and reliable, and the approximation performance is superior.

[Key words] fractional calculus; special function; approximation algorithms; global Padé approximation; fractional signal processing

0 引 言

在经典的整数阶微分方程理论中,指数函数 e'($t \in \mathbb{R}$)起着非常重要的作用,且是微分方程

$$\frac{\mathrm{d}x(t)}{\mathrm{d}t} = x(t) \tag{1}$$

的解: $x(t) = \kappa e^{-t}$ 。

复变量 z(z = x + iy) 的整函数—解析指数函数 e^z 的幂级数展开为:

$$e^{z} = \sum_{k=0}^{4} \frac{z^{k}}{k!} = \sum_{k=0}^{4} \frac{z^{k}}{\Gamma(k+1)}$$
(2)

e^{*} 的任意有限阶导数等于自身,这一特性对傅 里叶变换、拉普拉斯变换和 Z 变换意义重大。

1903年,米塔-列夫勒^[1]提出单参数米塔-列夫

勒函数:

$$\mathcal{E}_{\alpha}(z) = \sum_{k=0}^{*} \frac{z^{k}}{\Gamma(\alpha k + 1)}, \ \alpha, z \in \mathbb{C} \ , \ \operatorname{Re} \alpha > 0$$
(3)

其中, $E_{\alpha}(z)$ 是指数函数的单参量广义化结果。 1905年, Wiman^[2]提出双参数米塔-列夫勒函数:

$$E_{\alpha,\beta}(z) = \sum_{k=0}^{*} \frac{z^{k}}{\Gamma(\alpha k + \beta)}$$
(4)

 $\begin{aligned} \alpha_{\smallsetminus}\beta_{\curlyvee}z\in\mathbb{C}\;,\;&\mathrm{Re}\;\alpha>0,\;&\mathrm{Re}\;\beta>0\\ &\mathrm{显然f}_{:}E_{\alpha_{\perp}}=E_{\alpha_{\circ}}\end{aligned}$

1971年,Prabhakar^[3]提出三参数米塔-列夫勒函数:

$$E_{\alpha,\beta}^{\gamma}(z) = \sum_{k=0}^{4} \frac{\gamma^{\uparrow k} z^{k}}{n! \Gamma(\alpha k + \beta)}$$
(5)

通讯作者: 袁 晓 Email:15884306763@163.com

收稿日期: 2021-11-22

哈尔滨工业大学主办◆学术研究与应用

基金项目:国家自然科学基金(U1730141)。

作者简介:方字孟(1996-),女,硕士研究生,主要研究方向:分数微积分理论与应用;袁 晓(1964-),男,博士,副教授,主要研究方向:现代信 息信号处理、分数微积分理论与应用、现代电路与系统理论与技术;谢雨婧(1997-),女,硕士研究生,主要研究方向:分数微积分理 论与应用。

16

米塔-列夫勒函数在分数阶系统中的重要性如同 指数函数在整数阶系统中的重要性。 $E_{\alpha}(z)$ 称为分数 微积分的女王函数(the Queen Function of Fractional Calculus)。米塔-列夫勒函数类可用于表示分数阶微 积分方程的解,比如:第二类阿贝尔积分方程,含有黎 曼-刘维尔分数导数的微分方程等^[4-5],还可应用于 许多现代分数阶模型,比如:神经网络中的信息处 理^[6-7]、聚合物网络中的黏弹性^[8-9]、分子输运^[10]、热 传导^[11]、信号处理^[12]和反常扩散^[13]。

米塔-列夫勒函数广泛应用在各种研究领域与 工程应用之中,因此有必要研究米塔-列夫勒函数 的快速有效高精度算法。2002年,Gorenflo等人^[14] 提出分区算法,采用泰勒级数、积分表达和渐进级数 三种方法来计算米塔-列夫勒函数,但算法存在计 算错误。2015年,Garrappa等人^[15-16]基于米塔-列 夫勒函数的拉普拉斯变换,提出最优抛物线围线算 法。2018年,Garrappa等人在文献[17]中研究了带 矩阵参数的米塔-列夫勒函数的数值计算。2020 年,Saenko^[18]提出一种新的积分算法,将米塔-列夫 勒函数的积分表示成实部和虚部的和且每部分只依 赖实变量和实参数,但算法存在一定局限性。

除了以上提到的算法,研究者们还将帕德逼近 法应用于米塔–列夫勒函数的数值计算。帕德逼近 (Padé approximation)是法国数学家亨利·帕德提 出的有理多项式近似法,往往比截断的泰勒级数准 确。2007年,Starovoitov等人^[19]利用帕德逼近法研 究了米塔–列夫勒函数在 { $|z| \le 1$ }范围内的计算。 文献[20]和文献[21]基于帕德逼近法研究了米塔– 列夫勒函数 $E_a(-x^{\alpha})(x > 0)$ 的上下边界。

2003 年, Winitzki^[22]在帕德逼近的基础上提出 全局帕德逼近(global Padé approximation),构造了 超越函数的一致逼近。2005 年, Diethelm 等人^[23]提 供了米塔-列夫勒函数 $E_{\alpha}(-x^{\alpha})(0 < \alpha < 1)$ 的有 理逼近系数表,在 { $x \in [0.1,15]$ }范围内具有良 好的计算精度。2011 年, Atkinson 等人^[24]利用全局 帕德逼近法实现米塔-列夫勒函数 $E_{\alpha}(-x)$ 在 { $0 < \alpha < 1, x > 0$ }范围内的二阶逼近,但二阶逼 近的效果差,为了进一步提高计算精度,需要扩展到 更高阶逼近。

在前人研究基础上,本文将全局帕德逼近法应 用于双参数米塔-列夫勒函数 E_{α.θ}(x) 及其任意阶 导数的数值计算,实现了 10 阶逼近,计算精度可达 1×10⁻¹³%。经理论分析和仿真实验,证明了该算法 的运算有效性和可行性。

1 米塔-列夫勒函数的基本性质

米塔-列夫勒函数最主要的性质有 4 种:积分、微 分、渐进、拉普拉斯变换。这些性质不仅有助于求解 分数阶微积分方程,而且在实际的工程应用中具有重 要意义,比如:Bagley-Torvik 方程的数值求解,分数 阶被控系统和分数阶 PD 控制器系统中表示单位阶 跃响应,电介质的分数阶松弛方程的求解等^[5,25]。

1.1 米塔-列夫勒函数的积分

对双参数米塔-列夫勒函数(4)逐项积分得:

 $\frac{1}{\Gamma(v)} \int_{0}^{z} (z-t)^{v-1} \mathbf{E}_{\alpha,\beta}(\lambda t^{\alpha}) t^{\beta-1} dt = z^{\beta+v-1} \mathbf{E}_{\alpha,\beta+v}(\lambda z^{\alpha}) ,$ $\beta > 0, \quad v > 0 \tag{6}$ $\ddagger \Psi, \stackrel{.}{=} v = 1 \ \forall, \mathcal{F} \texttt{P} \texttt{I} \texttt{C}(6) \ \texttt{b} - \uparrow \texttt{F} \texttt{G} \texttt{I} \texttt{I}$

 $\int_{0}^{z} \mathbf{E}_{a,\beta}(\lambda t^{a}) t^{\beta-1} dt = z^{\beta} \mathbf{E}_{a,\beta+1}(\lambda z^{a}) , \beta > 0 \quad (7)$

Erdélyi 等人^[26]和 Džrbašyan 等人^[27-28]研究了 米塔-列夫勒函数沿汉克尔环的反常积分形式,得 到定理 1。

定理1 设0 < α < 2 且 $\beta \in \mathbb{C}$, 则对任意 $\beta > 0 与 \delta$, 满足 $\pi \alpha / 2 < \delta \leq \min \{\pi, \pi \alpha\}$ 时, 有: $E_{\alpha,\beta}(z) = \frac{1}{2\pi i \alpha} \int_{\gamma(\delta,\delta)} \frac{e^{\zeta^{1/\alpha} \zeta^{(1-\beta)/\alpha}}}{\zeta - z} d\zeta, z \in G^{(-)}(\delta,\delta)$ (8) $E_{\alpha,\beta}(z) = \frac{1}{\alpha} z^{(1-\beta)/\alpha} e^{z^{1/\alpha}} + \frac{1}{2\pi i \alpha} \int_{\gamma(\delta,\delta)} \frac{e^{\zeta^{1/\alpha} \zeta^{(1-\beta)/\alpha}}}{\zeta - z} d\zeta,$ $z \in G^{(+)}(\delta,\delta)$ (9)

其中,积分围线 $\gamma(\delta,\delta)$ 如图 1 所示,由 2 条射 线 $S_{\delta}(\arg \zeta = \delta, |\zeta| \ge \delta)$ 和 $S_{-\delta}(\arg \zeta = -\delta, |\zeta| \ge$ δ) 以及一个圆弧 $C_{\delta}(0,\delta)(|\zeta| = \delta, -\delta \le \arg \zeta \le \delta)$ 组成。积分围线左侧区域是 $G^{(-)}(\delta,\delta)$,右侧区域 是 $G^{(+)}(\delta,\delta)_{\circ}\delta$ 表示圆弧 C_{δ} 的半径, δ 表示积分变 量 ζ 的角度。

1.2 米塔-列夫勒函数的微分

对双参数米塔-列夫勒函数 $E_{\alpha,\beta}(z)$ 逐次求导可得 s 阶导数公式:

$$\frac{\mathrm{d}^{s}}{\mathrm{d}z^{s}} \mathrm{E}_{\alpha,\beta}(z) = \sum_{k=0}^{*} \frac{(k+s)(k+s-1)\cdots(k+1)}{\Gamma(\alpha k+\alpha s+\beta)} z^{k} = \sum_{k=0}^{*} \frac{(k+s)!}{k! \Gamma[\alpha(k+s)+\beta]} z^{k}, s \in \mathbb{N}^{*}$$
(10)

另外,文献[5]中给出 s 阶导数公式:

$$\underbrace{\overset{\boldsymbol{\partial}}{\overset{\boldsymbol{\partial}}{\boldsymbol{\partial}}}}_{\overset{\boldsymbol{\partial}}{\boldsymbol{\partial}}} z^{\beta^{-1}} \mathbf{E}_{\alpha,\beta}(z^{\alpha}) = z^{\beta^{-s-1}} \mathbf{E}_{\alpha,\beta^{-s}}(z^{\alpha}) \qquad (11)$$

1.3 米塔-列夫勒函数的渐进展开

利用式(8)和式(9)的积分表达得到米塔-列夫 勒函数在复平面上的渐进表达。

定理2 对于 $0 < \alpha < 2, \beta \in \mathbb{C}, m \in \mathbb{N}, 当$ | $\arg z | < \min \{\pi, \pi \alpha\}$ 时,有渐进展开式:

$$E_{\alpha,\beta}(z) = \frac{1}{\alpha} z^{(1-\beta)/\alpha} e^{z^{1/\alpha}} - \sum_{k=1}^{m} \frac{z^{-k}}{\Gamma(\beta - k\alpha)} + O(|z|^{-m-1}), |z| \rightarrow \mathbf{Y}$$
(12)

当 $0 < \alpha < 1, \pi \alpha < | \arg z | < \pi$ 时,有渐进展开 式:

$$E_{\alpha,\beta}(z) = -\sum_{k=1}^{m} \frac{z^{-k}}{\Gamma(\beta - k\alpha)} + O(|z|^{-m-1}), |z| \to \Psi$$
(13)

1.4 米塔-列夫勒函数的拉普拉斯变换

函数 $t^{\alpha k+\beta-1} \mathbf{E}_{\alpha,\beta}^{(k)}(\pm \lambda t^{\alpha})$ 的拉普拉斯变换:

$$\int_{0}^{4} e^{-st} t^{\alpha k+\beta-1} \mathbf{E}_{\alpha,\beta}^{(k)} (\pm \lambda t^{\alpha}) dt = \frac{k! s^{\alpha-\beta}}{(s^{\alpha} \mp \lambda)^{k+1}},$$

$$(\operatorname{Re}(s) > \mid \lambda \mid^{1/\alpha}), t \in \mathbb{R}, \lambda \in \mathbb{C}$$
(14)

其中, $E_{\alpha,\beta}^{(k)}(y)$ 表示 k 阶导数, 有:

$$\mathbf{E}_{\alpha,\beta}^{(k)}(\boldsymbol{y}) \equiv \frac{\mathbf{d}^{k}}{\mathbf{d}\boldsymbol{y}^{k}} \mathbf{E}_{a,\beta}(\boldsymbol{y})$$

2 米塔-列夫勒函数的数值算法

2.1 分区算法

Gorenflo 等人^[14]提出分区算法,用泰勒级数、积 分表达和渐进级数计算复平面上不同区域的米塔– 列夫勒函数。Seybold 等人^[29]在 Gorenflo 等人^[14]的 基础上做了改进,消除了变量靠近积分围线时的不 稳定现象。

对于 $\alpha > 0$ 、 $\beta \in \mathbb{R}$,分区算法能够计算复平面 上任意米塔-列夫勒函数 $E_{\alpha,\beta}(z)$ 的值。对复平面上 | z|的不同取值,采用不同的数值计算方法,以获 得最佳的稳定性和精度。基本思路是:当0 < $\alpha \leq$ 1、 $\beta \in \mathbb{R}$ 时, $|z| \leq r_0$ 则用泰勒级数(式(4))计算; |z| ≥r₁则用渐进级数(式(17)和式(18))计算; r₀ < |z| < r₁则用积分表达(式(8)和式(9))计算。 其中, r₀ 表示采用泰勒级数方法的区域半径上限 值, r₁ 表示采用渐进级数方法的区域半径下限值。 当 α > 1 时,用递归公式将其转为0 < α ≤ 1 的情形 再计算:

$$E_{\alpha,\beta}(z) = \frac{1}{2m+1} \sum_{h=-m}^{m} E_{\alpha/(2m+1),\beta}(z^{1/(2m+1)} e^{2\pi i h/(2m+1)})$$
(15)

其中, $\beta \in \mathbb{R}$, $z \in \mathbb{C}$; $m = [(\alpha - 1)/2] + 1$;[x]为不超过x的最大整数。

然而,分区算法存在一定缺陷。Popolizio 等 人^[30]指出分区算法存在计算错误。Saenko^[31]证明 了定理1有误,当 $z \in G^{(-)}(\delta,\delta)$ 时,积分表达式正 确;当 $z \in G^{(+)}(\delta,\delta)$ 时,积分表达式错误。指出分 区算法因使用了定理1导致 $z \in G^{(+)}(\delta,\delta)$ 产生计 算错误。

2.2 最优抛物线围线算法

Garrappa 等人^[15-16]提出最优抛物线围线算法, 在复平面上选择计算量和误差都最小的区域,对米 塔-列夫勒函数进行拉普拉斯反演计算。适用范 围: $\alpha > 0, \beta \in \mathbb{R}$, *z* ∈ C。核心计算公式为:

$$e_{\alpha,\beta}(t;\lambda) = \sum_{s^* \in S_c^*} \operatorname{Res}(e^{st} E_{\alpha,\beta}(s;\lambda), s^*) + \frac{1}{2\pi i} \int_c e^{st} E_{\alpha,\beta}(s;\lambda) \, ds$$
(16)

 $C_{:z(u)} = \mu(iu + 1)^2, - 4 < u < 4$

其中, *C* 表示积分围线, S_c^* 表示函数 $E_{\alpha,\beta}(s;\lambda)$ 在积分围线 *C* 内的奇点集合, $\operatorname{Res}(f,s^*)$ 表示函数 *f* 在奇点 s^* 处的留数。 $e_{\alpha,\beta}(t;\lambda)$ 是米塔–列夫勒函 数的推广形式, $E_{\alpha,\beta}(s;\lambda)$ 是 $e_{\alpha,\beta}(t;\lambda)$ 的拉普拉斯 变换, *f*:

$$\mathbf{e}_{\alpha,\beta}(t;\boldsymbol{\lambda}) = t^{\beta-1} \mathbf{E}_{\alpha,\beta}(t^{\alpha}\boldsymbol{\lambda}) , t \in \mathbb{R}_{+}, \boldsymbol{\lambda} \in \mathbb{C}$$
(17)

$$E_{\alpha,\beta}(s;\lambda) = \frac{s^{\alpha-\beta}}{s^{\alpha}-\lambda}, \Re(s) > 0, |\lambda s^{-\alpha}| < 1 \quad (18)$$

2.3 全局帕德逼近算法

2.3.1 全局帕德逼近

帕德逼近是从幂级数出发获得有理逼近的一种 简洁且有效的方法。其基本思想是对一个给定形式 的幂级数构造一个有理函数,使该有理函数的泰勒 展开尽可能与原来的幂级数吻合。这种方法克服了 用多项式逼近大扰度函数效果不理想以及用幂级数 (如泰勒级数)逼近函数收敛性太差等缺点。

定义1 设函数 $f(x) \in C[-a,a], N = m + n + 1$,如果有理函数 $R_{nm}(x)$ 可展开为:

$$R_{nm}(x) = \frac{p_n(x)}{q_m(x)} = \frac{p_0 + p_1 x + \dots + p_n x^n}{1 + q_1 x + \dots + q_m x^m}$$
(19)

其中,
$$p_n(x)$$
 和 $q_m(x)$ 互质,且满足条件:

$$\begin{aligned} R_{nm}^{(k)}(0) &= f^{(k)}(0) \quad k = 0, 1, \dots, n + m \quad (20) \\ \text{其中}, R_{nm}^{(k)}(0) \quad \pi f^{(k)}(0) \quad \text{表} \overrightarrow{R}_{nm}(x) \quad \pi f(x) \end{aligned}$$

在 x = 0 处的 k 阶导数。 $R_{nm}(x)$ 表示 f(x) 在 x = 0 处的 (n,m) 阶帕德逼近。当 n = m 时,逼近效果最佳。

Winitzki^[22]对式(19)进行改进,提出全局帕德 逼近形式:

$$R_{\nu}(x) = \frac{p_{\nu}(x)}{q_{\nu}(x)} = \frac{p_0 + p_1 x + \dots + p_{\nu} x^{\nu}}{q_0 + q_1 x + \dots + q_{\nu} x^{\nu}}$$
(21)

其中, $R_v(x)$ 表示 f(x) 在 x = 0 处的 v 阶全局帕 德逼近。

2.3.2 米塔-列夫勒函数的全局帕德逼近

Winitzki^[22]利用全局帕德逼近法实现了椭圆函数、误差函数、贝塞尔函数和艾里函数的有理逼近。 全局帕德逼近法主要是利用初等函数的泰勒级数和 超越函数的渐近级数实现计算。当 {0 < $\alpha \le 1$, $\beta \ge \alpha$ }时,米塔 - 列夫勒函数 $E_{\alpha,\beta}(-x)$ 在 [0,+¥)上是单调且有限的^[32-33],有 $E_{\alpha,\beta}(-¥) =$ 0。根据Winitzki的思想,可将全局帕德逼近法扩展 到双参数米塔-列夫勒函数 $E_{\alpha,\beta}(-x)$ ($x \ge 0$)的数 值计算之中,分 2 种情况计算: {0 < $\alpha \le 1, \beta > \alpha$ } 和 {0 < $\alpha = \beta < 1$ }。

(1) 情况一: $\{0 < \alpha \leq 1, \beta > \alpha\}$

根据双参数米塔-列夫勒函数定义式(4)得 $\Gamma(\beta - \alpha)xE_{\alpha\beta}(-x)$ 的泰勒级数和渐进级数:

$$\Gamma(\beta - \alpha) x \mathbf{E}_{\alpha,\beta}(-x) = \Gamma(\beta - \alpha) x$$
$$\sum_{k=0}^{m} \frac{(-x)^{k}}{\Gamma(\beta + \alpha k)} + O(x^{m}) \equiv a(x) + O(x^{m}), x = 0$$
(22)

$$\Gamma(\beta - \alpha)x \mathbf{E}_{\alpha,\beta}(-x) = -\Gamma(\beta - \alpha)x \sum_{k=1}^{n} \frac{(-x)^{-k}}{\Gamma(\beta - \alpha k)} + O(x^{-n}) \equiv b(x^{-1}) + O(x^{-n}), x = + \mathbf{Y}$$
(23)

其中,加权项 $\Gamma(\beta - \alpha)x$ 保证渐近级数(23)的 第一项系数为1。

对式(22)和式(23)取全局帕德近似:

$$\Gamma(\boldsymbol{\beta} - \boldsymbol{\alpha}) \boldsymbol{x} \mathbf{E}_{\boldsymbol{\alpha},\boldsymbol{\beta}}(-\boldsymbol{x}) \approx \frac{p(\boldsymbol{x})}{q(\boldsymbol{x})} \equiv \frac{p_0 + p_1 \boldsymbol{x} + \dots + p_{\nu} \boldsymbol{x}^{\nu}}{q_0 + q_1 \boldsymbol{x} + \dots + q_{\nu} \boldsymbol{x}^{\nu}}$$
(24)

其中, *v* ∈ N,表示全局帕德逼近的阶数。而 当 *x* = + ¥时,式(24)右边多项式的值为 p_{ν}/q_{ν} ,且可 令 $p_{\nu} = q_{\nu} = 1$ 。未知系数 p_i 和 q_i (*i* = 0,1,…,*v* − 1) 可由线性方程组求出:

$$p(x) - q(x)a(x) = O(x^{m}), x = 0, \quad (25)$$

$$\frac{p(x)}{x^{\nu}} - \frac{q(x)}{x^{\nu}}b(x^{-1}) = O(x^{-n}) , x = + ¥ (26)$$

其中,当m + n为奇数时,该非齐次线性方程组 存在唯一解。当 $m \approx n$ 时,式(24)的近似效果最 好。

根据文献[34]提及的米塔-列夫勒函数的2阶 逼近多项式,对式(22)和式(23)截断为 *m* = 1 阶和 *n* = 2 阶,令式(24)中 *v* = 2,得到:

$$a(x) = \frac{\Gamma(\beta - \alpha)}{\Gamma(\beta)} x - \frac{\Gamma(\beta - \alpha)}{\Gamma(\beta + \alpha)} x^2 \qquad (27)$$

$$b(x^{-1}) = 1 - \frac{\Gamma(\beta - \alpha)}{\Gamma(\beta - 2\alpha)} x^{-1}$$
(28)

$$\Gamma(\beta - \alpha) x E_{\alpha,\beta}(-x) \approx \frac{p_0 + p_1 x + x^2}{q_0 + q_1 x + x^2}$$
 (29)

将式(27)~式(29)代入式(25)和(26)中,解出 系数:

$$\begin{split} \tilde{\mathbf{p}}_{0} &= 0 \\ \tilde{\mathbf{p}}_{1} &= \frac{\Gamma(\beta)\Gamma(\beta + \alpha) - \frac{\Gamma(\beta + \alpha)\Gamma(\beta - \alpha)^{2}}{\Gamma(\beta - 2\alpha)}}{\Gamma(\beta + \alpha)\Gamma(\beta - \alpha) - \Gamma(\beta)^{2}} \\ \tilde{\mathbf{p}}_{1} &= \frac{\frac{\Gamma(\beta)^{2}\Gamma(\beta + \alpha)}{\Gamma(\beta - \alpha)} - \frac{\Gamma(\beta)\Gamma(\beta + \alpha)\Gamma(\beta - \alpha)}{\Gamma(\beta - 2\alpha)}}{\Gamma(\beta + \alpha)\Gamma(\beta - \alpha) - \Gamma(\beta)^{2}} \\ \tilde{\mathbf{p}}_{1} &= \frac{\Gamma(\beta)\Gamma(\beta + \alpha) - \frac{\Gamma(\beta)^{2}\Gamma(\beta - \alpha)}{\Gamma(\beta - 2\alpha)}}{\Gamma(\beta + \alpha)\Gamma(\beta - \alpha) - \Gamma(\beta)^{2}} \end{split}$$
(30)

将式(30)代入式(29)中得到 $E_{\alpha,\beta}(-x)$ 的 2 阶 全局帕德逼近式:

$$E_{\alpha,\beta}(-x) \approx \frac{1}{\Gamma(\beta - \alpha)x} \frac{p_0 + p_1 x + x^2}{q_0 + q_1 x + x^2} = \frac{\frac{1}{\Gamma(\beta)} + \frac{1}{\Gamma(\beta - \alpha)q_0}x}{\frac{1}{1 + \frac{q_1}{q_0}x + \frac{1}{q_0}x^2}}$$
(31)

同理,若要计算 $E_{\alpha,\beta}(-x)$ 的 v 阶逼近,对式 (22)和式(23)截断为 m = v - 1 阶和 n = v 阶,得:

$$a(x) = \Gamma(\beta - \alpha) x \sum_{k=0}^{\nu-1} \frac{(-x)^k}{\Gamma(\beta + \alpha k)}$$
(32)

$$b(x^{-1}) = -\Gamma(\beta - \alpha)x \sum_{k=1}^{v} \frac{(-x)^{-k}}{\Gamma(\beta - \alpha k)}$$
(33)

 $\Gamma(\beta - \alpha) x \mathcal{E}_{\alpha,\beta}(-x) \approx \frac{p_0 + p_1 x + \dots + p_{v-1} x^{v-1} + x^v}{q_0 + q_1 x + \dots + q_{v-1} x^{v-1} + x^v}$ (34)

将式(32)~式(34)代入式(25)和式(26)中,求 解式(34)中的系数 p_i 和 q_i ($i = 0, 1, \dots, v - 1$)。但 随着式(34)中等号右边的多项式阶数v的增大,系 数 p_i 和 q_i 的表达式中的 Γ 代数项也会增多。当阶 数v = 7时,系数 p_i 和 q_i 的表达式中的 Γ 代数项超 过1000个。当式(32)~式(34)中多项式阶数较大, 难以手算求解,可借助 Matlab 软件中的 solve()函 数求解代数方程,得到系数 p_i 和 q_i 的表达式。

系数 p_i 和 q_i 的表达式只跟参数 α 和 β 有关,因此 可根据参数 α 和 β 的取值,预先计算系数 p_i 和 q_i 的值 并存入矩阵中,以优化精度、计算时间和系统内存。

经过 Matlab 软件求解可知, 仅 $p_0 = 0, p_1 \sim p_{v-1}$ (v > 2)的表达式太过复杂不便于表示, 由式(34) 得 $E_{\alpha,\beta}(-x)$ 的 v 阶全局帕德逼近式:

$$E_{\alpha,\beta}(-x) \approx \frac{1}{\Gamma(\beta - \alpha)} \cdot \frac{p_1 + p_2 x + \dots + p_{v-1} x^{v-1} + x^v}{q_0 + q_1 x + \dots + q_{v-1} x^{v-1} + x^v}$$
(35)

(2) 情况二: $\{0 < \alpha = \beta < 1\}$

当 $\alpha = \beta$ 时,米塔-列夫勒函数 $E_{\alpha,\alpha}(-x)$ 有泰 勒级数和渐进级数:

$$\frac{\Gamma(1-\alpha)}{\alpha} x^{2} E_{\alpha,\alpha}(-x) = \frac{\Gamma(1-\alpha)}{\alpha} x^{2} \sum_{k=0}^{m} \frac{(-x)^{k}}{\Gamma(\alpha+\alpha k)} + O(x^{m}) \equiv a(x) + O(x^{m}), x = 0$$
(36)
$$\frac{\Gamma(1-\alpha)}{\alpha} x^{2} E_{\alpha,\alpha}(-x) = -\frac{\Gamma(1-\alpha)}{\alpha} x^{2} \sum_{k=2}^{n} \frac{(-x)^{-k}}{\Gamma(\alpha-\alpha k)} + O(x^{-n}) \equiv b(x^{-1}) + O(x^{-n}), x = + \mathbf{Y}$$
(37)
$$\oplus (\pi, m \log \frac{\Gamma(1-\alpha)}{\alpha} x^{2} \otimes \mathbb{K} \oplus \mathbb{K}$$

的第一项系数为1。

基于情况一的方法,解出情况二时 $E_{\alpha,\alpha}(-x)$ 的 2 阶全局帕德逼近式:

$$E_{\alpha,\alpha}(-x) \approx \frac{\frac{1}{\Gamma(\alpha)}}{1 + \frac{2\Gamma(1-\alpha)^2}{\Gamma(1+\alpha)\Gamma(1-2\alpha)}x + \frac{\Gamma(1-\alpha)}{\Gamma(1+\alpha)}x^2}$$
(38)

经 Matlab 软件求解可知, 仅 $p_0 = p_1 = 0$, 得 $E_{\alpha,\alpha}(-x)$ 的 v 阶全局帕德逼近式:

$$\mathbf{E}_{\alpha,\beta}(-x) \approx \frac{\alpha}{\Gamma(1-\alpha)} \cdot \frac{p_2 + p_3 x + \dots + p_{\nu-1} x^{\nu-1} + x^{\nu}}{q_0 + q_1 x + \dots + q_{\nu-1} x^{\nu-1} + x^{\nu}}$$
(39)

2.4 仿真结果及分析

为研究全局帕德逼近算法对米塔-列夫勒函数 的逼近效果,需要考虑的影响因素有:逼近阶数 v 和 参数 α。可将全局帕德逼近算法、分区算法和最优 抛物线围线算法做比较,综合分析全局帕德逼近算 法的逼近性能。

相对误差函数的数学定义为:

$$\eta = \left| \frac{\mathbf{E} - \mathbf{E}_{\pm}}{\mathbf{E}_{\pm}} \right| \times 100\% \tag{40}$$

米塔-列夫勒函数 E_{1/2,1}(x) 和 E_{1,2}(x) 的解析为:

$$E_{1/2,1}(x) = e^{x^2} erfc(-x)$$
(41)

$$E_{1,2}(x) = \frac{e^x - 1}{x}$$
(42)

其中,误差函数 erfc(x):

$$erfc(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{x} e^{-u^{2}} du = 1 - erf(x)$$
 (43)

在此基础上,拟对仿真结果进行剖析分述如下。

(1)分区算法、最优抛物线围线算法和全局帕 德逼近算法的比较。这里利用分区算法、最优抛物 线围线算法、全局帕德逼近算法和解析式(42)绘制 米塔-列夫勒函数 E_{1,2}(x)曲线,并绘制 3 种算法与 解析解之间的相对误差曲线,如图 2 所示。观察到, 最优抛物线围线算法在整个区间内的计算精度最 好,误差稳定在 1 × 10⁻¹³%数量级。分区算法的误 差在区间(10,15)内急剧增大,最高达 530.6%,在 其他区间的计算精度很好,甚至在区间(14,1 000) 内的相对误差为 0。全局帕德逼近算法的 10 阶逼 近的最大误差为 1.106 × 10⁻²%,而在区间(150, 1 000)内的误差稳定在 1 × 10⁻¹⁴%数量级。

文献[31]提到分区算法因使用了错误的积分表 达导致 $z \in G^{(+)}(\delta, \delta)$ 时产生计算错误,因此在区间 (10,15)内的误差非常大。由此看出,分区算法的计 算准确性不如全局帕德逼近算法和最优抛物线围线 算法。最优抛物线围线算法的计算精度高且稳定,可 用于下文验证全局帕德逼近算法的逼近性能。

(2)全局帕德逼近算法的逼近性能。为探究逼 近阶数 v 对逼近效果的影响,可绘制不同阶数下全 局帕德逼近的相对误差曲线,如图 3 所示。当 $\{0 < \alpha = \beta < 1\}$ 时,将全局帕德逼近算法和最优抛物线 围线算法的计算结果相比较,如图 3(a)所示。当 { $0 < \alpha \le 1, \beta > \alpha$ }时,将全局帕德逼近算法和解析 式(41)~(42)的计算结果相比较,如图 3(b)和图 3 (c)所示。图 3 展示了逼近阶数 v = 2,4,6,8,10时 的全局帕德逼近的相对误差。

为探究 α 对逼近效果的影响,固定β的值,绘制 α 在不同取值时的相对误差曲线,如图4所示。其 中,纵坐标表示全局帕德逼近算法和最优抛物线围 线算法之间的相对误差。

当逼近阶数 v > 2 时, 难以手算求解系数 p_i 和 q_i , 可借助 Matlab 软件求解。当 $\alpha = 0.5$ 、 $\beta = 1$ 时, 对应的 10 阶全局帕德逼近系数 p_i 和 q_i ($i = 0, 1, \dots, 9$)的值见表 1 和表 2。

观察图 3 和图 4,可得结论:

(1) 全局帕德逼近算法能在任意逼近阶数下计 算米塔-列夫勒函数 $E_{\alpha,\beta}(-x)$,逼近阶数 v 越高,误 差越小,逼近效果越好。当逼近阶数 v = 10 时,已提 供了足够的计算精度,和最优抛物线围线算法相当, 计算精度可达 $1 \times 10^{-13}\%$ 。

(2) 当β的值固定时,α的值越接近1,在区间
 (0,200)内的误差越大且存在一个最大误差,而误
 差在区间(200,+¥)内稳定在低水平。

(3) 当 *x* 取值很小或很大时,全局帕德逼近算 法的优势尤其明显,计算精度很高。*x* 取中间值时 存在最大误差,可提高逼近阶数来降低误差。

表 1 系数 $p_i(i=0,1,\dots,9)$ 的值 ($\alpha=0.5,\beta=1,\nu=10$) Tab. 1 The value of the coefficient $p_i(i=0,1,\dots,9)$ ($\alpha=0.5,\beta=1$, $\nu=10$)

<i>p</i> ₀	<i>p</i> ₁	p_2	<i>p</i> ₃	p_4
0	7 372	17 721	20 833	15 512
<i>p</i> ₅	p_6	p_7	p_8	p_9
8 009	2 966	789	146	17

表 2 系数 $q_i(i=0,1,\dots,9)$ 的值 ($\alpha=0.5,\beta=1,\nu=10$) Tab. 2 The value of the coefficient $q_i(i=0,1,\dots,9)$ ($\alpha=0.5,\beta=1$, $\nu=10$)

q_0	q_1	q_2	q_3	q_4
4 159	14 691	24 172	24 465	16 924
q_5	q_6	q_7	q_8	q_9
8 395	3 039	798	147	17

图 2 α=1,β=2,比较分区算法、最优抛物线围线算法和全局帕德 逼近算法

Fig. 2 Comparing the partitioning algorithm, the optimal parabolic contour algorithm and the global Padé approximation algorithm for $\alpha = 1$, $\beta = 2$

图 3 v 对逼近效果的影响

Fig. 3 The effect of v on the approximation

图4 α 对逼近效果的影响

Fig. 4 The effect of α on the approximation

3 米塔-列夫勒函数导数的全局帕德逼近

3.1 任意阶导数的全局帕德逼近

将全局帕德逼近算法扩展到米塔-列夫勒函数 任意阶导数 d^{*}E_{α,β}(*t*)/d(*t*)^{*}(*t* < 0,*s* ∈ N^{*}) 的数 值计算,与 2.3 节方法相同,分 2 种情况: {0 < $\alpha \leq$ 1, $\beta > \alpha$ } 和 {0 < $\alpha = \beta$ < 1}。为了便于计算,取 *t* = -*x*,则任意阶导数表示为:

 $d^{s} E_{\alpha \beta}(-x) / d(-x)^{s} (0 < x, s \in \mathbb{N}^{*})$ (44)

表 3 总结了双参数米塔-列夫勒函数任意阶导数的全局帕德逼近,列出了参数适用范围、核心计算公式(泰勒级数和渐进级数)以及 v 阶全局帕德逼近式。其中,s 表示米塔 - 列夫勒函数的导数阶数,v 表示全局帕德逼近算法的逼近阶数, p_i 和 q_i 表示全局帕德逼近式的系数。得到以下几点:

(1) s 阶导数的泰勒级数和渐进级数的加权项:

当 {0 < $\alpha \leq 1, \beta > \alpha$ } 时: $\frac{\Gamma(\beta - \alpha)x^{s+1}}{s!}$; 当 {0 < $\alpha = \beta < 1$ } 时: $\frac{\Gamma(1 - \alpha)x^{s+2}}{(s+1)! \alpha}$ 。

(2) 经 Matlab 软件编程求解,可知 s 阶导数的 v
 阶全局帕德逼近系数 p_i(i = 0,1,…,v-1):

当 {0 < $\alpha \leq 1, \beta > \alpha$ } 时: $p_0 = p_1 = \cdots = p_{s-1} = p_s = 0$;

当 $\{0 < \alpha = \beta < 1\}$ 时: $p_0 = p_1 = \cdots = p_s = p_{s+1} = 0_o$

(3) 当阶数 v = 2 时,可直接手算解出系数 p_i 和 q_i 的表达式。当阶数 v > 2 时,难以手算求解,系数 p_i 和 q_i(i = 0,1…,v-1)(除 p_i = 0之外)的表达式 随着 v 的增大而越复杂,此时可借助 Matlab 软件求 解。系数 p_i 和 q_i 的表达式只与参数 α 和 β 有关,因此

可根据参数 α 和 β 的取值,预先计算系数 p_i 和 q_i 的值 并存入矩阵中,以优化精度、计算时间和系统内存。

3.2 仿真结果及分析

当 {0 < $\alpha \le 1, \alpha \le \beta, x > 0$ } 时,通过 Matlab 软件可求解任意阶导数的全局帕德逼近式。为了探 究全局帕德逼近算法的准确性,不妨将全局帕德逼 近式的计算结果与文献[35]中*ml_func*()函数的计 算结果相比较,仿真结果如图 5 ~ 图 8 所示。 *ml_func*()函数能求解1到4参数($\alpha,\beta,\gamma,\kappa$)的米 塔-列夫勒函数及其导数,是目前唯一能够求解任 意阶米塔-列夫勒函数导数的可用代码。

为探究导数阶数 s 和逼近阶数 v 对逼近效果的 影响,绘制 $E_{\alpha,\beta}(-x)$ 的一阶、二阶、三阶导数在不同 逼近阶数下的相对误差曲线,可见图 5~图 7。

为了探究 α 和 β 取值向 1 趋近时的逼近效果, 这里取 { $\alpha = \beta = 0.5, \alpha = \beta = 0.7, \alpha = \beta = 0.9$ }, 绘制 dE_{α,β} (-x)/d (-x) 的 10 阶全局帕德逼近曲线、 *ml_func*() 函数曲线以及两者的相对误差曲线,可 见图 8。

观察图 5~图 8,得到结论:

(1)全局帕德逼近算法的逼近阶数 v 越高,误差 越小,逼近效果越好。

(2)米塔-列夫勒函数的导数阶数 s 越高,达到 相同逼近效果所需的逼近阶数 v 越高。图5中,一阶 导数的四阶逼近的相对误差大小和三阶导数的六阶 逼近的差不多。

(3) 当 {0 < $\alpha = \beta$ < 1} 时, $\alpha \pi \beta$ 取值越接 近于 1, 逼近效果越差。图 8 中, 在相同条件下, α 和 β 取值越大, 相对误差越大。当 $\alpha = \beta = 0.5$ 时, 最 大相对误差低于 1 × 10⁻³%。当 $\alpha = \beta = 0.9$ 时, 最大 相对误差超过 1×10³%。

10¹

表 3 双参数米塔-列夫勒函数任意阶导数的全局帕德逼近

Tab. 3 Global Padé approximation for any derivative of two-parameter Mittag-Leffler functions

导数阶数	参数范围	泰勒级数和渐进级数	v 阶全局帕德逼近式
1 阶	$0 < \alpha \leq 1, \beta > \alpha,$ $x \in [0, + ¥)$	$\Gamma(\beta-\alpha)x^2\frac{\mathrm{d}\mathrm{E}_{\alpha,\beta}(-x)}{\mathrm{d}(-x)} = \Gamma(\beta-\alpha)x^2\sum_{k=0}^m\frac{(k+1)(-x)^k}{\Gamma[\beta+\alpha(k+1)]} + O(x^m) \ , \ x = 0;$	$\frac{\mathrm{d}\mathrm{E}_{\alpha,\beta}(-x)}{\mathrm{d}(-x)}\approx$
		$\Gamma(\beta - \alpha)x^2 \frac{\mathrm{d}\mathrm{E}_{\alpha,\beta}(-x)}{\mathrm{d}(-x)} = -\Gamma(\beta - \alpha)x^2 \sum_{k=2}^n \frac{(1-k)(-x)^{-k}}{\Gamma[\beta + \alpha(1-k)]} + O(x^{-n}), x = + \texttt{¥}$	$\label{eq:product} \begin{split} \frac{1}{\Gamma(\beta-\alpha)} \cdot \frac{p_2+p_3x+\cdots+p_{v-1}x^{v-1}+x^v}{q_0+q_1x+\cdots+q_{v-1}x^{v-1}+x^v},\\ \mbox{\sharp} \mbox{\sharp} \mbox{\downarrow} \mbox{\downarrow}, p_0 = p_1 = 0 \end{split}$
	$0 < \alpha = \beta < 1,$ $x \in [0, + ¥)$	$\frac{\Gamma(1-\alpha)}{2\alpha}x^3\frac{\mathrm{d}\mathbf{E}_{\alpha,\alpha}(-x)}{\mathrm{d}(-x)} = \frac{\Gamma(1-\alpha)}{2\alpha}x^3\sum_{k=0}^m\frac{(k+1)(-x)^k}{\Gamma[\alpha+\alpha(k+1)]} + O(x^m) , x = 0;$	$\frac{\mathrm{dE}_{\alpha,\alpha}(-x)}{\mathrm{d}(-x)} \approx \frac{2\alpha}{p_3 + p_4 x + \dots + p_{v-1} x^{v-1} + x^v}$
		$\frac{\Gamma(1-\alpha)}{2\alpha}x^3 \frac{\omega \alpha, \alpha - \omega}{d(-x)} = -\frac{\Gamma(1-\alpha)}{2\alpha}x^3 \sum_{k=3}^{\infty} \frac{(1-k)(-x)}{\Gamma[\alpha + \alpha(1-k)]} + O(x^{-n}) , x = + \neq$	$\begin{split} &\Gamma(1-\alpha) q_0 + q_1 x + \dots + q_{v-1} x^{v-1} + x^{v'} \\ & \ddagger \psi, p_0 = p_1 = p_2 = 0 \end{split}$
2 阶	$\begin{aligned} 0 &< \alpha \leq 1, \beta > \alpha, \\ x &\in [0, + \mathbb{Y}) \end{aligned}$	$\frac{\Gamma(\beta-\alpha)x^3}{2}\frac{\mathrm{d}^2\mathrm{E}_{\alpha,\beta}(-x)}{\mathrm{d}(-x)^2} = \frac{\Gamma(\beta-\alpha)x^3}{2}\sum_{k=0}^m\frac{(k+2)(k+1)(-x)^k}{\Gamma[\beta+\alpha(k+2)]} + O(x^m) \ , \ x=0;$	$\frac{\mathrm{d}^{2}\mathrm{E}_{\alpha,\beta}(-x)}{\mathrm{d}(-x)^{2}}\approx$
		$\frac{\Gamma(\beta-\alpha)x^3}{2}\frac{\mathrm{d}^2\mathrm{E}_{\alpha,\beta}(-x)}{\mathrm{d}(-x)^2} = -\frac{\Gamma(\beta-\alpha)x^3}{2}\sum_{k=3}^n\frac{(2-k)(1-k)(-x)^{-k}}{\Gamma[\beta+\alpha(2-k)]} + $	$\frac{2}{\Gamma(\beta-\alpha)} \cdot \frac{p_3 + p_4 x + \dots + p_{v-1} x^{v-1} + x^v}{q_0 + q_1 x + q_2 x^2 + \dots + q_{v-1} x^{v-1} + x^v},$
		$O(x^{-n})$, $x = + ¥$	其中, $p_0 = p_1 = p_2 = 0$
	$\begin{aligned} 0 &< \alpha = \beta < 1, \\ x &\in [0, + ¥) \end{aligned}$	$\frac{\Gamma(1-\alpha)x^4}{6\alpha}\frac{\mathrm{d}^2\mathrm{E}_{\alpha,\alpha}(-x)}{\mathrm{d}(-x)^2} = \frac{\Gamma(1-\alpha)}{6\alpha}x^4\sum_{k=0}^m\frac{(k+2)(k+1)(-x)^k}{\Gamma[\alpha(k+3)]} + \mathcal{O}(x^m) \ , \ x=0;$	$\frac{\mathrm{d}^2 \mathrm{E}_{\alpha,\alpha}(-x)}{\mathrm{d}(-x)^2}\approx$
		$\frac{\Gamma(1-\alpha)x^4}{6\alpha}\frac{\mathrm{d}^2\mathrm{E}_{\alpha,\alpha}(-x)}{\mathrm{d}(-x)^2} = -\frac{\Gamma(1-\alpha)}{6\alpha}x^4\sum_{k=4}^n\frac{(2-k)(1-k)(-x)^{-k}}{\Gamma[\alpha(3-k)]} +$	$\frac{6\alpha}{\Gamma(1-\alpha)} \cdot \frac{p_4 + p_5 x + \dots + p_{v-1} x^{v-1} + x^v}{q_0 + q_1 x + q_2 x^2 + \dots + q_{v-1} x^{v-1} + x^v},$
		$O(x^{-n})$, $x = + ¥$	其中, $p_0 = p_1 = p_2 = p_3 = 0$
÷	:	:	÷
s Bît	$\begin{aligned} 0 &< \alpha \leq 1, \beta > \alpha, \\ x &\in [0, + \forall) \end{aligned}$	$\frac{\Gamma(\beta-\alpha)x^{s+1}}{s!}\frac{\mathrm{d}^{s}\mathrm{E}_{\alpha,\beta}(-x)}{\mathrm{d}(-x)^{s}} = \frac{\Gamma(\beta-\alpha)x^{s+1}}{s!}\sum_{k=0}^{m}\frac{(k+s)(k+s-1)\cdots(k+1)(-x)^{k}}{\Gamma[\beta+\alpha(k+s)]} + $	$\frac{\mathrm{d}^{s}\mathrm{E}_{\alpha,\beta}(-x)}{\mathrm{d}(-x)^{s}}\approx$
		$O(x^m)$, x = 0;	$\frac{s!}{\Gamma(\beta-\alpha)} \cdot \frac{p_{s+1}+p_{s+2}x+\cdots+p_{v-1}x^{v-1}+x^v}{q_0+q_1x+q_2x^2+\cdots+q_{v-1}x^{v-1}+x^v},$
		$\frac{\Gamma(\beta-\alpha)x^{s+1}}{s!}\frac{\mathrm{d}^{s}\mathrm{E}_{\alpha,\beta}(-x)}{\mathrm{d}(-x)^{s}} = -\frac{\Gamma(\beta-\alpha)x^{s+1}}{s!}\sum_{k=s+1}^{n}\frac{(s-k)\left(s-1-k\right)\cdots\left(1-k\right)\left(-x\right)^{k}}{\Gamma[\beta+\alpha(s-k)]} + \frac{1}{s!}\sum_{k=s+1}^{n}\frac{(s-k)\left(s-1-k\right)\cdots\left(1-k\right)\left(-x\right)^{k}}{\Gamma[\beta+\alpha(s-k)]} + \frac{1}{s!}\sum_{k=s+1}^{n}(s-k)\left(s-1-k\right)\cdots\left(1-k\right)\left(s-1-k\right)\cdots\left(1-k\right)\left(s-1-k\right)\cdots\left(1-k\right)\left(s-1-k\right)\cdots\left(1-k\right)\left(s-1-k\right)\cdots\left(1-k\right)\left(s-1-k\right)\cdots\left(1-k\right)\left(s-1-k\right)\cdots\left(1-k\right)\left(s-1-k\right)\cdots\left(1-k\right)\cdots\left(1-k\right)\left(s-1-k\right)\cdots\left(1$	其中, $p_0 = p_1 = \cdots = p_{s-1} = p_s = 0$
		$O(x^{-n})$, $x = + \neq$	
	$\begin{aligned} 0 &< \alpha = \beta < 1, \\ x &\in [0, + \texttt{¥}) \end{aligned}$	$\frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!\alpha}\frac{\mathrm{d}^{s}\mathrm{E}_{\alpha,\alpha}(-x)}{\mathrm{d}(-x)^{s}} = \frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!\alpha}\sum_{k=0}^{m}\frac{(k+s)(k+s-1)\cdots(k+1)(-x)^{k}}{\Gamma[\alpha(k+s+1)]} + \frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!\alpha}\sum_{k=0}^{m}\frac{(k+s)(k+s-1)\cdots(k+1)(-x)^{k}}{(s+1)!\alpha}$	$\frac{\mathrm{d}^{s}\mathrm{E}_{\alpha,\beta}(-x)}{\mathrm{d}(-x)^{s}} \approx$
		$O(x^m)$, x = 0;	$\frac{(s+1)!}{\Gamma(1-\alpha)} \cdot \frac{p_{s+2}+p_{s+3}x+\dots+p_{v-1}x^{v-1}+x^v}{q_0+q_1x+q_2x^2+\dots+q_{v-1}x^{v-1}+x^v}$
		$\frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!}\frac{\mathrm{d}^{s}\mathrm{E}_{\alpha,\alpha}(-x)}{\mathrm{d}(-x)^{s}} = -\frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!}\sum_{k=s+2}^{n}\frac{(s-k)(s-1-k)\cdots(1-k)(-x)^{k}}{\Gamma[\alpha(s-k+1)]} + \frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!}\sum_{k=s+2}^{n}\frac{(s-k)(s-1-k)\cdots(1-k)(-x)^{k}}{(s+1)!} + \frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!}\sum_{k=s+2}^{n}\frac{(s-k)(s-1-k)\cdots(1-k)(-x)^{k}}{(s+1)!} + \frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!}\sum_{k=s+2}^{n}\frac{(s-k)(s-1-k)\cdots(1-k)(-x)^{k}}{(s+1)!} + \frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!}\sum_{k=s+2}^{n}\frac{(s-k)(s-1-k)\cdots(1-k)(-x)^{k}}{(s+1)!} + \frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!}\sum_{k=s+2}^{n}\frac{(s-k)(s-1-k)\cdots(1-k)(-x)^{k}}{(s+1)!} + \frac{\Gamma(1-\alpha)x^{s+2}}{(s+1)!}$	其中, $p_0 = p_1 = \cdots = p_s = p_{s+1} = 0$
		$0(x^{-n})$,	
		$x = + \mathbf{Y}$	

越高,达到指定精度所需的逼近阶数 v 越高。

4 结束语

米塔-列夫勒函数类的表示、快速有效高精度 计算、显示、应用是近年来的研究热点^[5]。本文基 于全局帕德逼近技术构造双参数米塔-列夫勒函数 $E_{\alpha,\beta}(x)$ 及其任意阶导数 d^{*}E_{\alpha,β}(x)/d(x)^{*}(s ∈ N^{*}) 的数值算法,从泰勒级数和渐进级数出发实现高阶 全局帕德逼近。根据 α 和 β 的取值, β 2 种情况计 算: {0 < $\alpha \le 1, \alpha < \beta$ } 和 {0 < $\alpha = \beta < 1$ }, 理论 分析并求解全局帕德逼近式。通过大量仿真实验, 证明了全局帕德逼近算法的逼近性能优越,数值求 解结果稳定可靠。逼近阶数 v 越高,逼近效果越好, 10 阶逼近的计算精度可达 1 × 10⁻¹³%; 导数阶数 s

参考文献

- [1] MITTAG-LEFFLER G M. Une généralisation de l'intégrale de Laplace-Abel[J]. Comptes Rendus Hebdomadaires Des Séances De I Académie Des Sciences, 1903, 137(2): 537-539.
- [2] WIMAN A. Ber die nullstellen der funktionen [J]. Acta Mathematica, 1905, 29(1):217-234.
- [3] PRABHAKAR T R. A singular integral equation with a generalized Mittag – Lefflfler function in the kernel [J]. Yokohama Math Journal, 1971, 19:7–15.
- [4] MAINARDI F, GORENFLO R. On Mittag-Leffler-type functions in fractional evolution processes [J]. Journal of Computational & Applied Mathematics, 2000, 118(1-2):283-299.
- [5] PODLUBNY I. 分数微积分:理论基础与应用导论[M]. 袁晓,
 译. 北京:电子工业出版社,2021.

- [6] ZHANG Shuo, YU Yongguang, WANG Hu. Mittag Leffler stability of fractional – order Hopfield neural networks [J]. Nonlinear Analysis Hybrid Systems, 2014, 16: 104–121.
- [7] CHEN J, ZENG Z, JIANG P. Global Mittag-Leffler stability and synchronization of memristor – based fractional – order neural networks [J]. Neural Networks the Official Journal of the International Neural Network Society, 2014, 51:1–8.
- [8] GREBENKOV D S, VAHABI M, BERTSEVA E, et al. Hydrodynamic and subdiffusive motion of tracers in a viscoelastic medium[J]. Physical Review E, 2013, 88(4-1):040701.
- [9] VANDEBROEK H, VANDERZANDE C. Transient behaviour of a polymer dragged through a viscoelastic medium [J]. The Journal of Chemical Physics, 2014, 141(11):114910.
- [10] GOYCHUK I, KHARCHENKO V O, METZLER R. Molecular motors pulling cargos in the viscoelastic cytosol; how power strokes beat subdiffusion[J]. Physical Chemistry Chemical Physics Pccp, 2014, 16(31):16524-16535.
- [11] QI Haitao, GUO Xinwei. Transient fractional heat conduction with generalized Cattaneo model [J]. International Journal of Heat & Mass Transfer, 2014, 76:535-539.
- [12] DUARTE O M, TENREIRO M J A. Fractional signal processing and applications [J]. Signal Processing – Amsterdam, 2003, 83 (11): 2285–2286.
- [13] METZLER R, JEON J H, CHERSTVY A G, et al. Anomalous diffusion models and their properties: non stationarity, non ergodicity, and ageing at the centenary of single particle tracking
 [J]. Physical Chemistry Chemical Physics Pccp, 2014, 16(44): 24128–24164.
- [14] GORENFLO R, LOUTCHKO J, LUCHKO Y, et al. Computation of the Mittag-Leffler function and its derivative[J]. Fractional Calculus & Applied Analysis, 2002, 5(4):12–15.
- [15] GARRAPPA R, POPOLIZIO M. Evaluation of generalized Mittag-Leffler functions on the real line[J]. Advances in Computational Mathematics, 2013, 39(1): 205-225.
- [16] GARRAPPA R. Numerical evaluation of two and three parameter Mittag – Leffler functions [J]. SIAM Journal on Numerical Analysis, 2015, 53(3):26–37.
- [17] GARRAPPA R, POPOLIZIO M. Computing the matrix Mittag-Leffler function with applications to fractional calculus[J]. Journal of Scientific Computing, 2018, 77(1):1–25.
- [18] SAENKO V. Two forms of the integral representations of the Mittag-Leffler function[J]. Mathematics, 2020, 8(7): 1101.
- [19] STAROVOITOV A P, STAROVOITOVA N A. Padé approximants of the Mittag – Leffler functions [J]. Russian Academy of Sciences Sbornik Mathematics, 2007, 198(7):1011.
- [20] HIGHAM N J. Functions of matrices[M]. Philadel-phia: Society for Industrial and Applied Mathematics, 2008.

- [21] CONCEZZI M, SPIGLER R. Some analytical and numerical properties of the Mittag-Leffler functions[J]. Fractional Calculus & Applied Analysis, 2015, 18(1):64-94.
- [22] WINITZKI S. Uniform approximations for transcendental functions [C]//International Conference on Computational Science and Its Applications. Berlin/Heidelberg:Springer, 2003: 780–789.
- [23] DIETHELM K, FORD N J, FREED A D, et al. Algorithms for the fractional calculus: A selection of numerical methods [J]. Computer Methods in Applied Mechanics & Engineering, 2005, 194(6/8):743-773.
- [24] ATKINSON C, OSSEIRAN A. Rational solutions for the timefractional diffusion equation [J]. Siam Journal on Applied Mathematics, 2011, 71(1):92-106.
- [25] UCHAIKIN V, SIBATOV R, UCHAIKIN D. Memory regeneration phenomenon in dielectrics: the fractional derivative approach[J]. Physica Scripta, 2009, T136:014002-1-6.
- [26] ERDÉLYI A, MAGNUS W, OBERHETTINGER F, et al. Higher transcendental functions [M]. New York: McGraw – Hill Book Company, 1954.
- [27] DZRBAŠYAN M M. On the integral representation of functions continuous on several rays (generalization of the Fourier integral)
 [J]. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1954, 18;427–448.
- [28] DZHERBASHYAN M M, Integral transforms and representations of functions in the complex plane[M]. Moscow: Nauka, 1966.
- [29] SEYBOLD H, HILFER R. Numerical algorithm for calculating the generalized Mittag – Leffler function [J]. SIAM Journal on Numerical Analysis, 2009, 47(1):69–88.
- [30] POPOLIZIO M, GARRAPPA R. Fast evaluation of the Mittag-Leffler function on the imaginary axis [C]// International Conference on Fractional Differentiation & Its Applications. Catania, Italy:IEEE, 2014:1-6.
- [31] SAENKO V V. An integral representation of the Mittag-Leffler function[J]. arXiv e-prints, 2020.
- [32] MILLER K S. A note on the complete monotonicity of the generalized Mittag-Leffler function[J]. Real Analysis Exchange, 1999, 23(2):753-755.
- [33] SCHNEIDER W R. Completely monotone generalized Mittag Leffler functions[J]. Expositiones Mathematicae, 1996, 14(1): 3-16.
- [34] ATKINSON C, OSSEIRAN A. Rational solutions for the timefractional diffusion equation [J]. Siam Journal on Applied Mathematics, 2011, 71(1): 92-106.
- [35]薛定宇. 分数阶微积分学与分数阶控制[M]. 北京:科学出版 社, 2019.