文章编号: 2095-2163(2020)12-0094-05

中图分类号: TP301.6 文献标志码: A

一种高效的图编辑距离计算方法

陈梓扬,王 璿,周军锋,陈子阳 (东华大学 计算机科学与技术学院,上海 201620)

摘 要:图编辑距离是用来衡量图相似性的一个重要方法,在很多领域都有应用。图编辑距离问题是 NP-Hard 问题,现有图 编辑距离算法主要基于顶点映射搜索,由于搜索空间大,时间和空间效率较低。本文提出一个高效的基于 A* 的图编辑距离 算法,针对图对称性引起的映射冗余问题,利用 Symmetry-Breaking 方法,通过减少扩展映射数量,提高算法的运行效率。最 后,在真实数据集上进行实验,实验结果验证了其优化效果。

关键词:图编辑距离;图相似性;图对称性

An Efficient Algorithm to the Graph Edit Distance Computation

CHEN Ziyang, WANG Xuan, ZHOU Junfeng, CHEN Ziyang

(School of Computer Science and Technology, Donghua University, Shanghai 201620, China)

[Abstract] Graph edit distance (GED) is an important measure to perform similarity-based analysis between two graphs and is widely used in many applications. Because of the NP-hardness, existing algorithms for computing GED have large time and space consumption. This paper proposes an efficient GED algorithm, which improves the efficiency of A^* _GED by utilizing Symmetry-Breaking technique to reduce the number of vertex mappings to extend. Finally, the comparison is performed on real dataset, and the experimental results confirm the efficiency of the proposed algorithm.

[Key words] Graph edit distance; Graph similarity; Graph symmetry

0 引 言

图可以用来表示对象之间复杂的关系,因此在 很多领域有着大量应用。分析并管理图数据有很多 基本问题需要解决,近年来针对这些问题有大量研 究。在这些问题中,如何衡量两个图的相似性是很 多应用的基础。例如,图的分类,图的聚类以及图的 相似性查找等等。

近年来,研究者们提出了诸多的图相似性计算 方法^[1],在这些方法中,基于图编辑距离(Graph Edit Distance)的方法受到了很多关注,因为其适用 于多种类型的图。图编辑距离是指将一个图转变为 另一个图所需要的最小操作数量,可以用来衡量两 个图的相似程度。图编辑距离问题是一个 NP -Hard 问题^[2],时间和空间都有很大的开销。因此, 图编辑距离算法需要解决复杂度过高带来的开销过 大的问题。

现有的图编辑距离算法主要通过搜索顶点之间 的映射来进行,搜索过程可以视为扩展搜索树的过 程,搜索树的结点即顶点的映射。现有方法可以被 分为两类:最佳优先搜索和深度优先搜索。最佳优 先搜索基于经典的 A*搜索算法(A*_GED),在搜 索时优先扩展编辑代价,估计值最小的映射,搜索到 的第一个完整映射对应的编辑代价就是图编辑距 离。深度优先搜索(DF_GED)则优先扩展搜索树中 层次更深的映射,直到遍历完所有完整映射,取其中 最小的编辑代价作为图编辑距离。

A*_GED 会占用大量空间,而 DF_GED 在找到 局部最优解时会产生大量回溯,消耗大量时间^[3], 效率不如 A*_GED。针对 A*_GED 搜索空间过大 的问题,本文利用 Symmetry-Breaking 方法,通过降 低扩展映射数量,可以同时降低时间和空间开销。

1 相关工作

1.1 问题定义

定义1 图 *C* 为一个三元组,即 *G* = (*V*,*E*,*l*)。 其中, *V* 表示点的集合; *E* = *V* × *V* 表示边的集合; 令 Σ 表示标签集合, *l*:*V* ∪ *E* → Σ 表示图中顶点或边到 对应标签的映射。

定义2 编辑操作有6种,即点或边的删除、插

通讯作者:周军锋 Email:zhoujf@dhu.edu.cn

收稿日期: 2020-10-20

作者简介:陈梓扬(1996-),男,硕士研究生,主要研究方向:图的相似性查询、图编辑距离;王 璿(1977-),女,博士,副教授,主要研究方向:生物 信息;周军锋(1977-),男,博士,教授,博士生导师,主要研究方向:大图数据的查询处理技术、推荐系统关键技术;陈子阳(1973-), 男,博士,教授,博士生导师,上海立信会计金融学院特聘教授,计算机学会(CCF)会员,主要研究领域:数据库理论与技术。

人和替换。假设存在点u,v和空点 ε ,则点u的删 除操作表示为 $(u \rightarrow \varepsilon)$,点v的插入操作表示为 $(\varepsilon \rightarrow v)$,点u替换为点v表示为 $(u \rightarrow v)$;边的3 种操作的表示方法与此类似。

定义3 如果图 q 和图 g 满足以下 4 个条件,则称 q 与 g 同构:

(a)存在一个从V(q)到V(g)的双射f;

(b) l(v) = l(f(v)), $\forall v \in V(q)$;

(c) $(v,v') \in E(q)$,当且仅当 $(f(v),f(v')) \in E(g)$;

 $(d) l(v,v') = l(f(v),f(v')), \forall (v,v') \in E(q)_{\circ}$

定义4 编辑图 q,使得其于图 g 同构,把这一系列编辑操作的序列集合记为 k, e_i 表示第 i 步编辑操作, $k = (e_1, \dots, e_i, \dots, e_n)$,则称 k 为图 q 和 g 间的编辑路径。在图 q 和 g 间的所有编辑路径中,长度最短的路径成为最优编辑路径。

定义5 在图 q 和 g 间的所有编辑路径中,长度 最短的路径成为最优编辑路径。图编辑距离是最优 编辑路径的长度,记作 $\delta(q,g)$ 。

直接使用定义 5 进行图编辑距离计算,需要枚 举编辑路径,代价很大。目前常通过顶点映射定义 图编辑距离^[4]。不失一般性,规定 |V(q)| = |V(g) $| \cdot V(q) = V(g)$ 之间可以建立一一映射关系 f(以下简称映射)。

对于某一个完整映射f,定义编辑代价 $\delta_f(q, g)$ 。

定义 6 遵循映射 f (即 $v \in V(q)$, $f(v) \in V(g)$)前提下,将图 q 转化使得其与图 g 同构所需的最小代价,记作 $\delta_f(q,g)$ 。

对于部分映射f,定义编辑代价下界 $\delta(f)$ 。

定义7 对于所有由f扩展得到的完整映射,f的编辑代价下界不超过其编辑代价的最小值,记作 $\delta(f)$ 。

因此,可以给出基于映射的图编辑距离定义。

定义8 图编辑距离可以用式(1)定义:

 $\delta(q,g) = \min_{f \in F(q,g)} \delta_f(q,g) \ (1)$

其中, F(q,g) 表示所有从 V(q) 到 V(g) 的映 射。因此,计算图编辑距离,可以通过搜索编辑代价 值最小的顶点映射进行。

1.2 相关算法

已有不少工作基于搜索顶点映射进行图编辑距 离计算。现有算法从空映射开始,逐个映射顶点搜 索编辑代价最小的完整映射。由于图编辑距离问题 是 NP-Hard 问题,搜索空间的大小与顶点数量呈指 数关系。为了提高搜索效率,需要采取一些搜索策 略。

1.2.1 最佳优先搜索

目前最佳优先搜索主要基于 A* 搜索算法^[5]。 A* 搜索算法维护一个搜索前缘,由一个优先队列 Q 组成,算法初始状态下,队列中只有一个空映射,接 着开始迭代。每次迭代,A* 都会从 Q 中取出一个编 辑代价下界最小的映射,并对其进行扩展,即计算子 映射的编辑代价下界,并将其加入到队列中。A* 算 法能够保证,第一个从队列中取出的完整映射,其编 辑代价等于图编辑距离^[3]。A*_GED 需要在优先 队列中保存大量中间搜索状态,占用大量空间。 1.2.2 深度优先搜索

A*_GED 的问题是需要占用大量空间,近来有 研究采用深度优先搜索来避免这一问题。深度优先 搜索需要维护一个 $\delta(q,g)$ 的上界 $\overline{\delta}(q,g)$,是搜索 过程中遇到的完整映射编辑代价的最小值。DF_ GED 利用编辑代价下界来对搜索树进行剪枝^[6-7]。 如果遍历到的部分映射f满足 $\delta^{LS}(f) \ge \overline{\delta}(q,g)$,那 么以这个映射为根结点的子树会被剪枝。否则, DF_GED会访问它的所有子映射,并对子映射进行 扩展。虽然空间占用优于 A*_GED,DF_GED 通常 会陷入局部最优解中,在搜索树的某个子树上进行 大量的回溯,花费大量的时间,相比 A*_GED 效率 很低^[8]。本文常用符号见表 1。

表 1 常用符号 Tab. 1 Frequently used notations

符号	描述		
q, g	目标图 q, 查询图 g		
V(q), $E(q)$	q 顶点数和边数		
$\delta(q,g)$	q,g之间的图编辑距离		
$\bar{\delta}(q,g)$	$\delta(q,g)$ 的上界		
f	从 V(q) 到 V(g) 的(部分)映射		
$\delta_{f}(q,g)$	完整映射 f 对应的编辑代价		
q[f]	q中对应于映射 f 已映射部分的子图		
q h	q中除去 $q[f]$ 剩下的子图		
$\delta(q h, g h)$	将q\f编辑为g\f的编辑代价下界		
$Y(S_1, S_2)$	$\max\{ \; \mid S_1 \mid, \; \mid S_2 \mid\} \; - \!\!\mid \; S_1 \; \cap \; S_2 \mid$		
$\delta(f)$	f的编辑代价下界		
N(u)	顶点u的邻接信息		
code(f)	映射f等价类编码		

2 A* GED 与优化方法

2.1 A * _GED

A^{*}_GED 算法根据映射 f 的编辑代价下界 $\delta(f)$ 启发式搜索,优先选择 $\delta(f)$ 最小的映射进行扩展。 算法维护一个优先队列 Q,初始状态下,队列中只 有一个空映射,接着开始迭代。每次迭代,A^{*}都会 从 Q 中取出一个编辑代价下界 $\delta(f)$ 最小的映射 f, 并对其扩展,即计算其子映射的编辑代价下界,并将 子映射加入到队列中。A^{*}_GED 算法能够保证第一 个从队列中取出的完整映射,对应的编辑代价等于 图编辑距离^[3]。

例如,图1是查询图和目标图,图2是对其进行 映射搜索产生的映射搜索树, π 表示顶点映射顺 序,树结点表示映射,树结点旁的($u,\delta(f)$),表示 将 v_i 映射到u,形成的部分映射的编辑代价下界为 $\delta(f)$ 。如, $f_5 = \{v_1 \rightarrow u_1, v_2 \rightarrow u_2, \}, \delta(f) = 2$ 。在图 2中,一开始队列 $Q = \{f_0\}$ 。第一次迭代,取出 f_0 , 加入其子映射,之后 $Q = \{f_1, f_2, f_3, f_4\}$ 。第二次迭 代,从中取出编辑代价下界最小的 f_1 ,放入其子映 射 $\{f_5, f_6, f_7\}$,使得 $Q = \{f_2, f_3, f_4, f_5, f_6, f_7\}$ 。第三次 迭代,得到 $Q = \{f_2, f_3, f_4, f_5, f_6, f_7\}$ 。第三次 迭代,得到 $Q = \{f_2, f_3, f_4, f_6, f_7, f_8, f_6\}$,以此类推,直 到取出的映射是完整映射。在图2的搜索树上运行 A*算法,最终得到的完整映射是 f_{12} ,其编辑代价是 4,则图q,g的图编辑距离为4。为了图示的简洁, 映射没有全部画出。

图1 查询图 q 与目标图 g

图2 映射搜索树

图存在对称性,搜索树中很多映射是等价的。在搜 索时,重复扩展这些相同的中间映射,会浪费大量的 时间和空间。例如,图1中,顶点 u_3 和 u_4 事实上是 等价的。扩展映射 $f_5 = \{v_1 \rightarrow u_1, v_2 \rightarrow u_2\}$ 时,需要 为 v_3 选择映射顶点,可能的顶点有 u_3 和 u_4 ,即子映 射有 $f_8 = \{v_1 \rightarrow u_1, v_2 \rightarrow u_2, v_3 \rightarrow u_3\}, f_9 = \{v_1 \rightarrow u_1, v_2 \rightarrow u_2, v_3 \rightarrow u_4\}$ 。由于 u_3 和 u_4 顶点标签一致,邻 接关系也一致,因此与 v_3 匹配产生编辑代价下界是 相等的, $\delta(f_8) = \delta(f_9) = 4$ 。不仅如此,以其为根的 子树也是等价的。也就是说,在搜索树中, $f_8 = f_9$ 只 需要保留其中一个。

实际应用中,图的对称性很普遍。比如有些化 合物的分子式,内部存在大量等价的顶点。对其进 行图编辑距离的计算,会因为对称性浪费大量的时 间空间。

本文利用 Symmetry-Breaking 消除对称性引起的冗余映射,从而降低时空开销,提高计算效率。

2.2 Symmetry-Breaking

Symmetry-Breaking 是一个用来打破图的对称 性的方法。Grochow 等曾把其应用在 motif 发现问 题中^[9];Chen 等提出的 GED 计算方法曾使用过类 似的思想来消除 GED 计算过程中产生的重复中间 映射,但消除对称性的程度不高^[3]。当对称的顶点 相互连接,例如图 2 中 u_3 , u_4 顶点,该方法无法消除 对称性。本文提出的方法能更好地消除对称性。

对于 V(g) 中的每一个顶点 u,定义其邻接信 息为 $N(u) = \{(v, l(u, v)) : v \in V(g) \land (u, v) \in E(g)\}$ 。 $N(u)/u' = \{(v, l(u, v)) : v \in V(g) \land (u, v) \in E(g) \land v \neq u'\}$,表示 N(u) 除去 v' 的邻接 信息。

定义9 等价顶点:对于 $u,v \in V(g), u$ 等价于 $v, 记作 u \sim v_{\circ} u \sim v$ 当且仅当l(u) = l(v)并且 $N(u)/v = N(v)/u_{\circ}$

例如 图 2 中, $N(u_3)/u_4 = N(u_4)/u_3 = \{(u_1, c)\}$ 。根据顶点之间的等价关系,可以将 V(g) 划分 为 λ_g 个等价类 V_g^1 , $V_g^2 \cdots V_g^{\lambda_g}$ 。如果 $u \in V_g^i$, 就说 u属于 i 类, 记作 $\theta(u) = i$ 。例如,可以将图 2 中的 V(g) 划分为 3 个等价类, $\theta(u_1) = 1, \theta(u_2) = 2,$ $\theta(u_3) = \theta(u_4) = 3$ 。

对于一个映射 $f = \bigcup_{l=1}^{|f|} \{v_{i_l} \rightarrow u_{j_l}\}$,可以根据等 价类关系给出一个等价类编码。 $code(f) = (\theta(u_{j_1}), \dots, \theta(u_{j_{|f|}}))$ 。例如, $code(f_8) = code(f_9) = (1, 2, 3)$ 。可以证明,如果使用 LS 或 LSa 的编辑代价下 界估计方法,对于等价类编码相同的两个映射,其编 辑代价下界是相等的,可以视为等价映射。

定理 1 若 $code(f_1) = code(f_2)$, 则 $\delta(f_1) = \delta(f_2)_{\circ}$

证明 为叙述清晰,证明以 LS 算法为例, LSa 算法同理。 $\delta(f) = \delta_f(q[f], g[f]) + \delta(q \setminus f, g \setminus f) =$ $\delta_f(q[f], g[f]) + Y(L_V(q \lor f), L_V(g \lor f)) + Y(L_E(q \lor f)),$ $L_{E}(g \setminus f)$)^[8]。其中, q[f] 和 g[f] 分别为 q 和 g 的 已映射部分, q\f和g\f分别表示 q和g的未映射部 分。 $L_{V}(q \setminus f)$ 表示 $q \setminus f$ 中包含的顶点标签集合, $L_{v}(g \mid f)$ 同理。 $L_{E}(q \mid f)$ 表示 $q \mid f$ 中包含的边标签集 合, $L_{E}(g \setminus f)$ 同 理。由 δ_{f} 的 算 法 易 得 $\delta_{f_1}(q[f_1], g[f_1]) = \delta_{f_2}(q[f_2], g[f_2]) \circ Y(S_1, S_2) =$ max{ $|S_1|, |S_2|$ } - $|S_1 ∩ S_2|$ 是集合 S_1, S_2 之间的 编辑距离^[8]。 f_1 与 f_2 定义域相同,则 $L_v(q \setminus f_1) =$ $L_{V}(q \setminus f_{2}), L_{E}(q \setminus f_{1}) = L_{E}(q \setminus f_{2})$ 。根据等价类的定 义,显然 $L_V(g \setminus f_1) = L_V(g \setminus f_2)$, $L_E(g \setminus f_1) =$ $L_E(g \setminus f_2)$ 。 所以 $Y(L_V(q \setminus f_1), L_V(g \setminus f_1))$ + $Y(L_E(q \setminus f_1), L_E(g \setminus f_1)) = Y(L_V(q \setminus f_2), L_V(g \setminus f_2))$ + $Y(L_{E}(q \setminus f_{2}), L_{E}(g \setminus f_{2}))$ \\ \\$\box{\box{\$\box{\$L\$}}}, \delta(f_{1}) = \delta(f_{2})_{\oxed{o}}

在扩展子映射时,对于等价类编码相同的子映 射,如果只保留其中一个,就可以避免大量重复的时 间和空间消耗,定理1证明了该做法的正确性。算 法1是消除等价顶点重复性的A*_GED算法。从 第9行到第12行,在为*v*_{i+1}计算候选映射顶点集合 时,去掉了等价类相同的点。

算法1 A*_GED with Symmery-Breaking 输入:图 q,g

- 输出:q 与 g的图编辑距离 $\delta(q,g)$
- (1) generate mapping order $\boldsymbol{\pi}$ = (v_1 , v_2 , v_3 , \cdots , $v_{|V(q)|}$)
- (2) compute $\theta(u_i)$ for each $u_i \in V(g)$
- (3) init priorityqueue Q, push emptynode ($\emptyset, 0, 0$) (4) while $Q \neq do$
- (5) pop $(f, i, \delta(f))$ from Q
- $(\mathbf{c}) \quad (\mathbf{c}) \quad ($
- (6) / * full mapping found, return * /
- (7) if i = |V(q)| then return $\delta(f)$
- $(8) \qquad /* \ \text{compute candidates for} \ v_{i+1} \ */$
- $(9) \quad C(v_{i+1}) \leftarrow \emptyset$
- $(10) \quad \text{ for each } u_i \in V(g \backslash f) \text{ do}$

(11) if
$$\mathfrak{B} u_j \in C(v_{i+1}), \theta(u_j) = \theta(u_i)$$
 then

(12) add
$$u_i$$
 to $C(v_{i+1})$

- (13) extend (Q,f,i + 1,C(v_{i+1}))
- (14) Procedure extend $(Q, f, j, C(v_j))$
- (15) for each $u_i \in C(v_j)$ do

(16) compute
$$\delta(f \cup \{v_j \to u_i\})$$

(17) push $(f \cup \{v_j \rightarrow u_i\}, j, \delta(f \cup \{v_j \rightarrow u_i\}))$ into Q

分析 Symmetry-Breaking 的搜索空间,即搜索树的大小。记 |V(q)| = |V(g)| = |V|。 搜索树可以按层划分,第 *l* 层的树结点个数记为 *N*_l。 记搜索空间为 *S*_R = $\sum_{l=0}^{|V|} N_l$ 。 对于 *l* 层的树结点,需要从 *V*(*g*) 中选取 *l* 个顶点进行映射。记这 *l* 个顶点为 *B*^{*l*}_{*g*} = {*u*_{j1}… *u*_{j1}}。 用一个向量 *x* = [*x*₁… *x*_{*Ag*}] 表示其分类情况,即 *x*_m 表示 *B*^{*l*}_{*g*} 中有 *x*_m 个顶点属于 *V*^m_{*g*}。 显然,有下式

$$\sum_{m=1}^{\lambda_g} x_m = l, 0 \le x_m \le |V_g^m|, 1 \le m \le \lambda_g.$$
(2)

式(2)的一个解 **x**, 对应于一个独特的 B_{g}^{l} 。记 Ψ_{l} 为式(4)所有解的集合。一个解 **x** 可以产生 <u>l!</u> 个等价类编码。例如, **x** = [2,1,0], 可能 $\prod_{m=1}^{\lambda_{g}} x_{m}!$

产生的等价类编码为 < 1,1,2 > < 1,2,1 > < 2,1, 1 >。 每个等价类编码对应于一个从 B_q^l 到 B_g^l 独特的映射,即搜索树结点。那么, $N_l = \sum_{x \in \Psi_l} \frac{l!}{\prod_{x_m} x_m!}$ 。

当l = |V|时,显然式(4)有唯一解 $x = [|V_g^1|, |V_g^2|, \dots, |V_g^m|]_{\circ}$ 因此 $N_{|V(g)|} = \frac{|V|!}{\prod_{m=1}^{\lambda_g} |V_g^m|!}$ 。因为 $N_0 = 1, N_1 \le N_2 \le \dots \le N_{|V|},$ 所以, $S_R \le |V| \frac{|V|!}{N_1} + 1$,即 $S_P = N_1$

3 实验分析

3.1 实验环境

实验所使用的硬件配置:

- (1) CPU: Intel Xeon E5-1620 3.6GHz
- (2) RAM:64GB
- (3)操作系统: Ubuntu 20.04 64 位
- 编程语言:C++

编译器:G++ 9.3.0

3.2 数据集

本文考察的图为无向图,带有顶点和边标签,化

R的 对比 AStar⁺−LSa [⊥]

合物的分子数据与本文所需要图数据近似。选取的 实验数据来自 PubChem 数据集,是图相似性研究中 的常用数据集。数据集中,图的顶点为原子,顶点标 签为原子类型,边为原子之间的化学键,边标签为化 学键类型。表2为 PubChem 的详细参数。

表 2 PubChem 数据集

Tab. 2 PubChem Dataset

数据集名称	平均 V	平均 E	$\mid L_{V} \mid$	$\mid L_E \mid$
PubChem	24	25.8	81	3

将数据集按照图的顶点个数进行分组,对于某一个整数*i*,顶点个数在[*i* - 2,*i* + 2]区间内的图会被分入一组。比如对于*i* = 5,顶点个数在区间[3,7]之内的图会被分入一组。取*i* \in {5,10,15,20,25,30}六组进行实验,每组 30 个查询,每个查询由一对查询图、目标图组成。

3.3 实验指标

为比较优化效果,以 AStar⁺-LSa 为基准,对比 本文提出的优化方法。实验获取 3 个指标,每个指 标均取 30 个查询的平均值:

(1)图编辑距离的计算时间;

(2)扩展映射的数量,即从优先队列出队,需要 进行扩展计算的映射数量;

(3)总映射数量,反应计算所需的空间。

3.4 实验结果与分析

实验得到的计算时间见表 3,中间扩展映射数 量见表 4,总映射数量见表 5。

表3 计	算时间
------	-----

Tab.	3	Running	Time
------	---	---------	------

i	AStar ⁺ -Lsa(ms)	Symmetry-Breaking
5	0.054	0.051
10	0.79	0.64
15	306.64	214.03
20	8 729.98	5 871.22
25	38 437.40	16 413.71
30	29 363.70	22 802.19

表4 扩展映射数量

Tab. 4 Number of expanded mappings

i	AStar ⁺ -Lsa	Symmetry-Breaking
5	15.07	13.47
10	152.10	107.97
15	46 814.17	34 054.37
20	1 071 083.80	741 774.77
25	3 470 354.25	1 566 321.35
30	226 0961.87	1 784 663.27

表 5 总映射数量

Tab. 4 Number of enqueued mappings

i	AStar ⁺ -Lsa	Symmetry-Breaking
5	24.47	18.50
10	489.90	309.20
15	237 033.00	157 511.43
20	6 642 829.53	4 281 243.93
25	32 377 533.70	12 211 274.40
30	26 026 531.93	19 058 130.80

对比 AStar⁺-LSa 与 Symmetry-Breaking,可以很 明显的看出。Symmetry-Breaking 具有不错的时空 优化效果。以 i = 25 的图为例,空间上,总映射数量 优化约 62%。时间上,扩展映射数量降低 54%,计 算时间约降低 57%,说明计算时间上的优化主要来 自扩展映射数量的减少,这符合预期。对于 i = 5 的 小图而言,优化效果不如大图明显,总映射数量约优 化 25%,时间优化 5%,这是由于小图的扩展映射计 算量不大,且对称顶点较少,优化空间不大。对于 i≥ 10 的图,空间上优化效果在 36% ~ 60%,时间上 的优化效果在 20% ~ 57%。总体而言,空间占用平 均降低了 41%,时间消耗平均降低了 37%。因此, 实验验证了 Symmetry-Breaking 的高效性。

4 结束语

针对 A*_GED 算法在计算图编辑距离时效率 较低的问题,本文使用了 Symmetry-Breaking 方法, 定义了顶点之间的等价关系,通过降低等价的冗余 映射数量,同时优化了时间和空间效率,实验结果表 明,空间占用平均降低了 41%,时间消耗平均降低 了 37%,具有不错的优化效果。

参考文献

- [1] 徐周波,张鹍,宁黎华,等.图编辑距离概述 [J]. 计算机科学, 2018,45(4):11-8.
- [2] ZENG Z, TUNG A K, WANG J, et al. Comparing stars: On approximating graph edit distance [J]. Proceedings of the VLDB Endowment, 2009, 2(1): 25-36.
- [3] CHEN X, HUO H, HUAN J, et al. Fast Computation of Graph Edit Distance [J]. arXiv preprint arXiv:170910305, 2017.
- [4] BLUMENTHAL D B, BORIA N, GAMPER J, et al. Comparing heuristics for graph edit distance computation [J]. The VLDB Journal, 2020, 29(1): 419–458.
- [5] RIESEN K, FANKHAUSER S, BUNKE H. Speeding up Graph Edit Distance Computation with a Bipartite Heuristic [C]// Mining and Learning with Graphs, MLG 2007, Firence, Italy, August 1– 3, 2007, Proceedings. DBLP, 2007.
- [6] BLUMENTHAL D B, GAMPER J. Exact Computation of Graph Edit Distance for Uniform and Non – uniform Metric Edit Costs [C]// International Workshop on Graph–Based Representations in Pattern Recognition. Springer, Cham, 2017.
- [7] ABU-AISHEH Z, RAVEAUX R, RAMEL J Y, et al. An exact graph edit distance algorithm for solving pattern recognition problems [M]. 2015.
- [8] CHANG L, FENG X, LIN X, et al. Efficient graph edit distance computation and verification via anchor – aware lower bound estimation [J]. arXiv preprint arXiv:170906810, 2017,
- [9] GROCHOW J A, KELLIS M. Network motif discovery using subgraph enumeration and symmetry-breaking: proceedings of the Annual International in Computational Molecular Biology, International Conference, Recomb, Oakland, Ca, Usa, April. Springer. Berlin, Heidelberg, 2007.