文章编号: 2095-2163(2019)01-0165-04

中图分类号: TN86 文献标志码: A

一种新型油田远距低功耗死点开关的设计

曹庆年,杨宏兴,孟开元,王 瑶

(西安石油大学 计算机学院,西安 710065)

摘 要:为解决当前油田三线制电压式抽油机死点开关存在的供电电压高、信号传输距离短、非接触距离近、功耗大、抗干扰能力差、成本高等问题,设计了一种新型两线制远距低功耗抽油机死点开关。该死点开关主要由 MSP430F1611IPM 芯片、电源模块、探头模块、无线通讯模块和复位模块5部分组成。通过采用电流传输抽油机冲次和位置信号,增强了信号传输的抗干扰能力,增加了信号传输距离;通过采用低功耗的大动态范围 TMR 线性传感器、微瓦级别的功放和两线制的接线,极大地降低了功耗和成本。

关键词: 死点开关; 远距; 低功耗; 电流传输

A new long distance and low power consumption design of dead-spot switch for oilfields

CAO Qingnian, YANG Hongxing, MENG Kaiyuan, WANG Yao

(School of Computer Science, Xi'an Shiyou University, Xi'an 710065, China)

[Abstract] The three-wire dead-spot switch transmitting signal by voltage and working for oil pumping unit in oilfields has many deficiencies, such as high – supply – voltage, short signal transmission distance, short non – contact distance, large power consumption, poor capability of anti-jamming and high cost. In order to solve these problems, a new long distance and low power consumption of dead-spot switch is designed. The new dead-spot switch consists of the MSP430F1611IPM chip, power module, switch-probe module, wireless communication module and reset module. The new dead-spot switch enhances the anti-jamming capability of signal transmission and increases signal transmission distance by using current to transmit the frequency signal and position signal of oil pumping unit. The new dead-spot switch greatly reduces power consumption and cost by using TMR linear sensor, microwatt-level power amplifier and two-wire connection.

[Key words] dead-spot switch; long distance; low power consumption; current transmission

0 引 言

抽油机控制系统和各类仪表为油田的生产带来 了极大的便利,为油田实现远程监测和控制提供了 基础^[1]。死点开关又称为接近开关或限位开关^[2], 是监测抽油机死点位置的重要设备。死点开关主要 分为接触式和非接触式 2 种类型^[3],非接触式中又 分为电感式、电容式、霍尔式、交直流型、光电性等。 目前,非接触式死点开关多采用三线电压信号传输 死点位置信号,这种传输方式主要存在以下问题:供 电电源需要的电压等级高,通常需要 5 V 以上电源 供电;探头非接触距离近,只有 2-3 cm;信号传输的 抗干扰能力差,电压信号容易受到空间辐射和传导 辐射的干扰,造成信号失真;信号传输距离短,通常 小于 3 m;传输电压信号需要 3 根传输线,成本相对 较高等。 本文设计的新型油田远距低功耗死点开关采用 电流传输位置信号,增强了信号的抗干扰能力,增加 了信号传输距离。此外,死点探头通过采用大动态 范围 TMR 线性传感器^[4]、微瓦级别的功放和两线制 的接线,降低了死点开关的功耗和成本。

1 新型死点开关的作用和组成

1.1 新型死点开关的作用

死点开关主要用于监测抽油机的冲次和死点位 置^[5],通过 ZigBee 无线网络传输采集到的抽油机数 据。新型死点开关的油田监测系统如图 1 所示。油 田监测系统通过新型死点开关,可快速判断抽油机 的运行状态,实现对抽油机的智能监控,降低成本, 提高效益。

1.2 新型死点开关的结构与模块组成

本死点开关模块主要由 MSP430F1611IPM 芯

作者简介:曹庆年(1963-),男,教授,主要研究方向:计算机网络与通信;杨宏兴(1993-),男,硕士研究生,主要研究方向:通信与信息系统; 孟开元(1968-),男,副教授,主要研究方向:计算机网络与通信;王 瑶(1994-),女,硕士研究生,主要研究方向:计算机应用技术。

片、电源模块、探头模块、无线通讯模块、复位模块5部分组成。其中 MSP430F1611IPM 芯片是该新型 死点开关的核心,其集成了电源模块、探头模块、无 线通讯模块、复位模块。新型死点开关的组成如图 2 所示。

图 1 应用新型死点开关的油田监测系统

Fig. 1 Oilfield monitoring system that using a new dead – point switch

Fig. 2 Module composition of the new dead-spot switch 1.2.1 电源模块

本设计选用TPS62056DGS芯片作为电源模

块的转换器,该芯片是由 TI 公司研发的低功耗、高性能的电源转换器^[6],可实现将 2.7~10 V 的动态 电压转化为 0.6~7 V 的稳定电压。

1.2.2 探头模块

探头模块主要是根据两线制电流传输的原则设 计的,主要用来采集抽油机冲次和位置信号并转化 为电流信号输出。探头模块的组成如图 3 所示,主 要由直流电源、保护电路、大动态范围 TMR 线性传 感器、电压比较器和电压-电流转换器 5 部分组成。 采用低功耗的大动态范围 TMR 线性传感器采集抽 油机冲次和位置信号,通过窗口比较器将差分电压 信号转换为高低电平信号,最后再使用电压-电流 转换器将高低电平信号转换为电流信号输出。

Fig. 3 Probe module composition

TMR 线性传感器是一种电流传感器。通过对 比可知 TMR 线性传感器比霍尔器件、AMR 和 GMR 元件具有功耗低、体积小、灵敏度高、精度高、线性范 围宽、抗干扰能力强、分辨率高和温度稳定性好等优 点。各传感器元件参数对比见表 1。

	表 1	「MR 与 Hall、AMR、GMR 参数对比	
ab. 1	Compar	on of TMR and Hall, AMR, GMR parameter	rs

技术	功耗/mA	尺寸/mm	灵敏度/(mV/V/Oe)	工作范围/Oe	分辨率/mOe	温度特性/℃
TMR	0.001-0.01	0.5 * 0.5	20	0.001-200	0.015	<200
AMR	1-10	1 * 1	1	0.001-10	0.1	<150
GMR	1-10	2 * 2	3	0.1-30	2	<150
Hall	5-20	1 * 1	0.05	1-1 000	500	<150

探头模块的原理如图 4 所示。直流电源与外部 电源模块相连,主要为电路提供动力;保护电路由二 极管 D₁和电容 C_{in1}并联组成,用于解决电源反接和 交直流误接的情况;大动态范围 TMR 线性传感器用 于输出抽油机的冲刺和死点位置信号;电压比较器 由放大器 U_{3A}和 U_{3C}、电阻 R₁和 R₂、二极管 D₂和 D₃ 组成,实现实际电压与参考电压的比较,输出预期的 高低电平;电压-电流转换器是由电阻 R₈和三极管 组成的恒流源电路,用于将得到的高低电平转化为 电流信号。

1.2.3 无线通讯模块

本设计采用 XBEE-20 无线通讯模块将采集到的抽油机冲次和位置信号通过 ZigBee 网络传递给 RTU 或仪表网关。XBEE-20 模块是 Digi 公司采用 ZigBee 技术的无线模块^[7],通过串口实现与单片机 等设备间的通信,能够快速地将设备接入到 ZigBee 网络。

图4 探头模块原理图

Fig. 4 Schematic diagram of the probe module

1.2.4 复位模块

复位电路主要由复位芯片 SP809NEK-2-3/TR 和霍尔器件 A3212 组成,当死点开关需要复位或重 置时,只需用磁铁在复位模块处刷一下即可,比传统 的按键重置更加简单实用。

2 新型死点开关的功耗与距离

2.1 新型死点开关的功耗

低功耗主要体现在探头模块上,探头模块具有 待机和工作2种模式。

(1)待机模式。当探头远离磁铁时,TMR 线性 传感器处于输出关闭状态,正向输出和负向输出均 为0,此时电路的功耗如式(1)所示:

$$P_{st} = P_{U_{10}} + P_{U_2} = I^2 R_{U_{10}} + I^2 R_{U_2}$$
(1)

(2)工作模式。当探头靠近磁铁时,TMR 线性 传感器处于输出通路状态,此时电路的功耗如式 (2)所示:

$$P_{u0} = P_{U_{10}} + P_{U_2} + P_{U_{3A}} + P_{U_{3C}} + P_{R_1} + P_{R_2} + P_{R_8} + P_{Q_1} + P_{R_9}$$
(2)

2.2 新型死点开关的非接触距离

非接触距离可以通过电阻 *R*₁ 和 *R*₂ 的大小进行 调节,电阻 *R*₁、*R*₂ 用于产生参考电压,可通过改变电 阻大小调整参考电压的门限值,进而调节死点开关的 非接触距离。调节最大非接触距离如式(3) 所示:

$$V_{R} = \frac{R_{2}}{R_{1} + R_{2}} V_{CC}$$

$$V_{U_{2}(-OUT)} < V_{R} < V_{U_{2}(+OUT)}$$

$$D_{Max} = \frac{V_{R}}{V_{U_{2}(+OUT)}} \times 9$$

$$(3)$$

其中, V_R 是产生的参考电压, D_{Max} 是不同参考电压下的最大非接触距离。

3 测试结果

在胜利油田对该新型死点开关的非接触距离、信 号传输距离和功耗进行了现场测试。

3.1 非接触距离测试

测量了不同等级电源电压下的最大非接触距 离、电流和功耗,其结果见表 2。

表 2 电压与最大非接触距离之间的关系

Tab. 2	Relationship	between	voltage and	l maximum	non-contact	distance
--------	--------------	---------	-------------	-----------	-------------	----------

电压等级/V	最大非接触距离/cm	待机电流/mA	工作电流/mA	待机功耗/mW	工作功耗/mW
2.0	8-9	0.06	0.31	0.120	0.620
2.5	8-9	0.08	0.41	0.200	1.025
2.7	8-9	0.09	0.46	0.243	1.242
3.0	8-9	0.10	0.54	0.300	1.620
3.6	8-9	0.08	0.57	0.288	2.052

离;

根据以上测试结果,可得出如下结论:

(1)本设计的最大非接触距离约是常规三线制 电压式死点开关的 3-4 倍,增加了非接触距离;

(2)本设计可适应不同等级的电源电压,且在 不同等级的电源电压下,均能达到最大的非接触距 (3)本设计的功耗为毫瓦级别.功耗较低。

3.2 死点探头的传输距离测试

选择在直流 3.6 V 电源下测量不同电流信号传 输距离的非接触距离、电流和功耗,其结果见表 3。

表 3 3.6 V 电压下信号传输距离对其它因素的影响

Tab.	3	Effect of	of signal	transmission	distance on	other	factors	at 3.6	V
------	---	-----------	-----------	--------------	-------------	-------	---------	--------	---

	电源电压/V	信号传输距离/m	最大非接触距离/cm	待机电流/mA	工作电流/mA	待机功耗/mW	工作功耗/mW
_	3.6	1	8-9	0.09	0.58	0.324	2.088
		2	8-9	0.08	0.58	0.288	2.088
		4	8-9	0.09	0.58	0.324	2.088
		6	8-9	0.09	0.57	0.324	2.052
		10	8-9	0.08	0.57	0.288	2.052

根据以上测试结果,可得出如下结论:

(1) 增加死点开关的传输距离对开关的最大非 接触距离影响不大;

(2) 增加死点开关的传输距离对产品的功耗影 响不大,功耗变化可忽略不计。

4 结束语

本文设计了以 MSP430F1611IPM 芯片为核心 的两线制电流式抽油机死点开关,旨在解决油田三 线制电压式抽油机死点开关存在的不足。该新型死 点开关通过采用电流传输抽油机冲次和位置信号, 增强了信号传输的抗干扰能力,增加了信号传输距 离;通过采用低功耗的大动态范围 TMR 线性传感 器、微瓦级别的功放和两线制的接线,极大地降低了 功耗和成本。此外,可引入低功耗广域网(LPWAN) 中的 LoRa 和 NB-IOT 技术进一步优化本设计,更好

(上接第164页)

同层次不同尺度的特征层上对肿块目标进行检测。 不同层次不同尺度的特征层中的每个神经单元在原 图像中所对应的感知区域大小不同,因此每个特征 层对某一尺度级别的目标的检测性能相对于其它尺 度级别更好。对不同层次不同尺度特征层的预测结 果进行结合,可使得模型对尺度不一的目标都有较 好的检测结果。本文在 DDSM 数据库上展开实验 验证,结果表明基于多尺度特征的乳腺肿块病变检 测方法的性能要优于目前在 DDSM 数据库上性能 较佳的一些肿块检测方法,证实了本文方法的有效 性。

参考文献

- [1] WHO. Cancer fact sheets [EB/OL]. [2018-02-07]. http:// www.who.int/mediacentre/factsheets/fs297/en/index.html.
- [2] DROMAIN C, BOYER B, FERRÉ R, et al. Computed-aided diagnosis (CAD) in the detection of breast cancer[J]. European Journal of Radiology, 2013, 82(3):417-423.
- [3] ELMORE J G, JACKSON S L, ABRAHAM L, et al. Variability in interpretive performance at screening mammography and radiologists ´ characteristics associated with accuracy [J]. Breast Diseases A Year Book Quarterly, 2010, 21(4):330-332.
- [4] GIRSHICK R. Fast R CNN [J]. arXiv preprint arXiv: 1504. 08083, 2015.

地为油田服务。

参考文献

- [1] 王雅荟,杨雷鹏,范蟠果. 基于 ZigBee 技术的油田远程监控系统 的设计[J]. 计算机测量与控制,2013,21(2):374-376.
- [2] 周国华, 许建平. 开关变换器调制与控制技术综述[J]. 中国电机工程学报, 2014,34(6):815-831.
- [3] 郭小燕,朱波涛,胡旭喆.死点位置在开关类设备中的应用[J]. 河北工业科技,2015,32(1):50-54.
- [4] 王孟贤, 郗玉珠, 陈峙, 等. 用于测量油气井及其抽油机工况参数的装置:中国, CN205477585U[P]. 2016-08-17.
- [5] 武伟伟, 黄毅, 王斌斌. 抽油机节能装置研究及应用[J]. 石油 石化节能, 2015(4):38-39,42.
- [6] HUGHES A R. Loop-powered field instrument: US, WO/2006/ 127421[P]. 2006-11-30.
- [7] ARIYATHANGAM T. Advanced rescue system for industrial monitoring using ZIGBEE GSM and FPGA [J]. International Journal of Engineering Sciences & Research Technology, 2014, 3 (4):1-4.
- [5] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
- [6] UIJLINGS J R R, SANDE K E A, GEVERS T, et al. Selective search for object recognition [J]. International Journal of Computer Vision, 2013, 104(2):154-171.
- [7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multiBox detector[J]. arXiv preprint arXiv:1512.02325, 2015.
- [8] HEATH M, BOWYER K, KOPANS D, et al. Current status of the digital database for screening Mammography [M]// KARSSEMEIJER N. Digital Mammography. Netherlands: Springer, 2001:457-460.
- [9] RIBLI D, HORVÁTH A, UNGER Z, et al. Detecting and classifying lesions in mammograms with Deep Learning [J]. Scientific Reports, 2018, 8(1):4165.
- [10] DHUNGEL N, CARNEIRO G, BRADLEY A P. Automated mass detection in mammograms using cascaded deep learning and Random Forests [C]// 2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA). Adelaide, SA, Australia:IEEE, 2015:1–8.
- [11] ELTONSY N H, TOURASSI G D, ELMAGHRABY A S. A concentric morphology model for the detection of masses in mammography [J]. IEEE Transactions on Medical Imaging, 2007, 26(6):880-889.
- [12] SAMPAT M P, BOVIK A C, WHITMAN G J, et al. A modelbased framework for the detection of spiculated masses on mammography[J]. Medical Physics, 2008, 35(5):2110-2123.