文章编号: 2095-2163(2019)01-0053-04

中图分类号: TM46 文献标志码: A

直流微电网母线电压控制策略

王 威,周小安

(深圳大学信息工程学院,广东深圳 518000)

摘 要: 母线电压是衡量一个直流系统稳定的重要标准,本文针对孤岛运行的直流微电网系统,提出了一种母线电控制策略, 旨在当系统内部或者外部发生变化时,系统能够及时做出应对,保持母线电压稳定。本文建立了一个典型直流微电网模型, 并利用 Matlab 仿真验证了控制策略的有效性和可行性。

关键词: 直流微电网; 光伏发电; 母线电压

The DC microgrid bus voltage control strategy

WANG Wei, ZHOU Xiao'an

(College of Information Engineering, Shenzhen University, Shenzhen Guangdong 518000, China)

(Abstract) The bus voltage is an important standard to measure the stability of a DC system. In order to respond the changes and keep a steady running timely when internal or external changes of the system occur, this paper presents a bus voltage control strategy for island DC microgrid. A typical DC microgrid model is established in this paper. Using Matlab/Simulink simulation and experimental verification, the results verify the effectiveness and feasibility of the method.

[Key words] DC microgrid; photovoltaic generation; bus voltage

0 引 言

近年来随着能源与环保问题的加剧以及全球一次性能源的过度使用,使得人们开始高度关注对可 再生能源的开发,因此形成了由不同类型分布式电 源(Distribute Generation)组成的微电网。微电网中 电源多为分布式电源,包括风力发电机、光伏发电以 及微型燃气轮机,还有燃料电池、超级电容、飞轮、蓄 电池等储能装置。而这些组件均配接在用户侧,具 有低成本、低电压和低污染的特点,有效地解决了大 型集中电网许多潜在问题^[1-2]。

但这些分布式电源本身存在着不稳定性,所以 当分布式电源接入微电网时会对系统造成影响,其 中如何维持母线电压的稳定是判定直流电网系统稳 定的一个重要因素。现有一些文献对这方面做了些 许研究,文献[3]给出了一种基于母线电压信号的 协调控制策略,对不同直流微电网的运行模式进行 了仿真,但是该控制模式没有考虑到蓄电池 SOC (State of Charge)的变化,最后可能会引发过冲损坏 蓄电池装置,从而影响整个系统的稳定。文献[4] 通过分析传统 PI 控制器以及各参数的变化,进而提 出一种提高直流微电网母线电压稳定性的新型控制 策略,使得直流微电网能够保障可靠的稳定运行,但 是该策略没有考虑到一些极端情况,例如当有大功 率用电单元接进来时,系统该如何反应。文献[5] 提出了一种改进的电压控制信号(DC Bus Signaling,DBS)的能量管理策略,通过监控母线电压 信号来对系统进行模态切换和电网能量的分配,该 控制策略无需集中控制器,从而提高了系统的可运 行性,但是该方法不适用于孤岛运行的系统,因为在 孤岛情况下,若无大电网的接入,只是通过监控母线 电压的变化,将无法达到全程的严密监控。

针对上述一些问题,本文以光伏直流微电网为 研究对象,提出了一种基于直流母线电压的管理控 制策略。当母线电压面临内部或者外部条件变化 时,系统母线电压进行自适应调节,同时当处于极端 条件的情况下,可适当地改变母线控制策略,从而有 效维持母线电压的稳定。

1 直流微电网系统结构

本文研究的光伏直流微电网结构如图 1 所示。 主要由光伏(PV)发电模块、蓄电池储能模块以及负 荷单元组成。

图1中,光伏模块通过升压式 DC-DC 电路接

基金项目:中央财政支持地方高校专项资金(8060000260205)。

作者简介:王 威(1993-),男,硕士研究生,主要研究方向:直流微电网、母线电压控制;周小安(1968-),男,博士,副教授,主要研究方向:混 沌系统、保密通信、非线性系统理论。

入到直流母线中。蓄电池储能模块通过双向 DC-DC 电路接入到直流母线中,负荷单元分为重要负荷 以及非重要负荷,其等效的电路拓扑结构如图 2 所 示。

图1 光伏直流微电网系统

Fig. 1 Photovoltaic DC microgrid system

图 2 光伏微电网等效拓扑结构图

Fig. 2 Equivalent topological structure diagram of photovoltaic microgrid

图 2 中,用光伏以及蓄电池等效一个直流电源, 直流负载等效于一个电阻,2 个 IGBT 形成电压源双 向 DC-DC 电路,通过采用相移的方法来控制功率 的流向和大小^[6],使得蓄电池能量双向流动,从而 进行充放电;图 2 中的二极管防止电流倒回光伏电 池,实现左侧光伏模块能量的单相流动;*C*₁、*C*₂ 为电 源侧电容,起到滤波作用。

2 各模块控制策略

2.1 光伏模块控制策略

光伏模块作为微电源接入到电网时,为了使得 PV 发挥最大功效,必须适时追踪最大功率点 (Maximum Power Point Tracing, MPPT),常见的有2 种基本的 MPPT 方法:扰动观察法(P&Q)和电导增 量法(INC)^[7-8]。本文采用的是扰动观察法,该方法 通过给光伏电池的输出电流周期性施加一定步长的 扰动,从而使得光伏电池的工作点不断靠近 MPP。

由于光伏模块本身受光照强度影响很大,除了 使光伏模块维持在最大功率点外,还需要加入 Boost 升压变换器,用来维持母线电压的稳定,控制结构如 图 3 所示。图 3 中, U_{pv} , I_{pv} 分别为光伏板输出的电 压与电流; G_{pv} 为从 PWM 中输出的占空比,用来控 制 boost 变换器开断时间; V_{dv} 为输出的母线电压。 为提高 Boost 变换器效率,当检测到光照强度为 200 W·m²时,随即将会启动 Boost 变换器。

Fig. 3 Control mode of PV model

当光伏模块处于图 3 控制模式时,可以得到光 伏输出功率 P_w,其数学公式可表示如下:

$$P_{pr} = I_{pr} V_{dc} (1 - G_{pr}) \tag{1}$$

从式(1)可以看出,可以实时地改变占空比来 调节光伏板输出功率。当占空比较大时,输出功率 较小;当占空比较小时,输出功率变大。

2.2 蓄电池 SOC 控制策略

蓄电池组作为该系统主要供电单元,对维持母 线电压的稳定发挥着关键作用。在系统中,蓄电池 组与母线之间通过一个双向 DC/DC 变换器相连,用 于管理蓄电池可控的充放电操作。当蓄电池放电 时,DC/DC 变换器工作于 boost 模式,开始向直流母 线供电;当蓄电池充电时,DC/DC 变换器工作于 buck 电路,将光伏端多余的电能存储到蓄电池以及 备用蓄电池中。

蓄电池与备用蓄电池充放电控制见表 1。表 1 中, SOC (State of Charge)为荷电状态,也叫剩余电 量; P_{pp} 为光伏板输出功率; P_{load} 为负载功率; P_{bat} 为 蓄电池输出功率。

表 1 蓄电池组充放电控制 Tab. 1 Charge and discharge control of battery pack

蓄电池	备用蓄电池	蓄电池状态
<i>SOC</i> > 60 或	<i>SOC</i> > 80 或	放电
$P_{pv} < P_{load}$	$P_{pv} + P_{bat} < P_{load}$	会团
10 < 500 < 60	10 < 50C < 80	全内
$SOC < 10 \ \text{m} P_{pv} > P_{load}$	SOC < 10	充电

从表1中可得到蓄电池通过监控 SOC 状态与 各个模块输出功率。共有3种工作状态,对其可阐 释分述如下。

(1)放电模式。当蓄电池电量 SOC > 60, 电量 充裕时,开始对外放电,或者功率监控到 P_{pe} < P_{load}, 即光伏功率无法满足母线负载上的功率时,蓄电池 开始对母线提供功率补偿,此时蓄电池 DC/DC 变换 器工作于 boost 升压模式,功率由蓄电池侧流向网侧。

(2)空闲状态。当系统检测到光伏板输出功率 可以承载母线负载功率时,DC/DC 变换器处于断开 状态,蓄电池处于既不充电、也不放电的空闲状态, 提高了 DC/DC 变换器的使用效率,避免了该变换器 频繁的断与开。

(3)充电状态。当蓄电池 SOC 较低时,蓄电池 进行充电,或者当母线负荷功率较少, P_{pv} > P_{load}, 光伏板富余的电量流向蓄电池侧,此时 DC/DC 变换 器处于 buck 降压模式。

综上3种为蓄电池控制策略,备用蓄电池的控制方式和蓄电池的大致相同,在 SOC 状态上,数字 有点偏差,备用蓄电池只有当 SOC 很高时才加入电 网中,或者出现一些极端情况,比如连续阴雨天,光 伏模块基本处于不工作状态,因此蓄电池已无法满 足母线负荷的需求,备用蓄电池则接入电网中,此时 还会适当考虑降低直流母线电压或者切除非重要负 载来维持母线电压的稳定运行。

2.3 蓄电池双向 DC/DC 充放电控制

为了研发蓄电池充放电的功能,本文选用的是 Buck/Boost 型双向变换器作为储能装置与直流母线 的接口控制主电路,该变换器可以实现能量的双向 流动,且结构简单,易于控制^[9-10]。其控制方式如图 4 所示。图 4 中, U_{dc} 为反馈回来的直流母线电压, U_{dc-ref} 为给定的母线电压参考值,I_{bat} 为蓄电池电流 实际值,I_{ref} 为电压外环得出的内环蓄电池电流参考 值,G_{bat} 为蓄电池输出的占空比信号。通过该双环 控制能够有效地维持母线电压的稳定性,并且当蓄 电池 SOC 达到满值的时候,会强制将 I_{ref} 变为 0,使 得蓄电池不再进行充电。

2.4 母线电压控制

由于系统处在孤岛运行,也就需要考虑到,当遇 到光伏等新能源严重不足的极端条件下系统的运行 策略。

对于在极端条件下,例如光伏模块出现故障,或 者光照强度很低的情况下,光伏板输出功率极低,无 法满足系统需求时,本文给出了母线电压控制策略 如图 5 所示。其中, P_{ref} 为给定的蓄电池输出最低 参考值, P_{pes} 为蓄电池输出的实际功率, ΔP 为蓄电 池输出功率与蓄电池给定的参考值的差值。当检测 到 ΔP 大于定值时,通过 PID 控制降低母线的运行 电压;当检测到 ΔP 小于定值(给蓄电池充电)时,在 系统允许的情况下,则适当提高母线的运行电压。

图 4 DC/DC 双环 PI 控制图 Fig. 4 DC/DC double loop PI control chart

图 5 母线电压控制策略 Fig. 5 Bus voltage control strategy

3 仿真结果

为了验证上述控制策略的有效性,利用 Matlab/ Simulink 搭建了图 1 所描述系统的仿真系统来进行 实验。其中,光伏接口变换器采用的是 Boost 升压 电路;蓄电池模块采用的是 Simulink 里自带的蓄电 池模块,蓄电池标准电压为 220 V,额定容量为 12 A・h;蓄电池接口采用的是 Buck/Boost 双向电 路,直流负载用的是电阻代替,直流母线电压初始值 为 300 V。

3.1 光伏输出变化对母线电压的影响仿真

图 6 表示了光伏板端光照强度、光伏板输出功 率、直流母线电压随时间的变化情况。由图 6 可见, 开始负载功率保持不变,维持在 6 KW,整个仿真过 程为 1 s,在此期间,让光伏输出功率发生变化。最 初光伏板光照强度为 600 W · m²,在 0.4 s 升至 1 000 W · m²,0.8 s降为 800 W · m²,此时光伏输出功 率也随之出现起伏,从 2 900 W 先升至 3 900 W,最 后下降到2 200 W,在光伏输出波动的情况下,可以 看到母线电压一直维持在 300 V 左右,偏差很小。

从该仿真结果可以得到,在其它条件不变的情况下,光伏板输出功率发生改变,母线电压仍然可以 维持稳定。

3.2 负载变化对母线电压影响仿真

图 7 是母线负载功率的变化和母线电压随时间 的变化情况。由图 7 可见,开始让光伏板输出为最 大功率 3 900 W,蓄电池输出功率为 2 200 W,母线 初始电压 300 V,整个仿真过程为 1 s,并于此期间, 让母线发生改变。在仿真中,起初母线负载为 3 KW,在 0.5 s时接入一个同样大小的负载,让负载总 负荷为 6 KW。从图 7 可以看出,负载在 0.5 s时稍 有波动,即在负载加入的瞬间母线电压波动,但最后 还是维持稳定在 300 V。

Fig. 7 Load change simulation of bus voltage

从该仿真结果可以得到,在其它条件不变的情况下,母线负载功率发生改变,母线电压仍然可以维持稳定。

3.3 极端条件下降压运行的仿真结果

在新能源严重不足的极端条件下,系统需要降 压运行,以确保部分重要负荷继续可靠地运行。图 8就是该种情况下仿真的光伏输出功率。由图 8 可 见,蓄电池 SOC 变化和母线电压随时间的变化情 况。仿真初期系统处于正常运行状态,此时光伏板 输出功率为 3.9 KW,母线电压为 300 V;0.5 s 时,光 伏输出功率突然降低为 0,在光伏输出降低的瞬间, 系统通过控制,降压到 220 V 运行。当母线电压降 低到 220 V 时,母线负载所消耗的功率也一并降低, 此时蓄电池 SOC 放电速度没有明显变化,但是系统 少了光伏输出的支持,SOC 放电速度仍然不变,说明 母线电压的降低缓解了蓄电池放电压力。

Fig. 8 Bus voltage control simulation under extreme conditions

从该仿真结果可以得到,当系统处于极端条件 下时,通过检测蓄电池输出功率和放电速度,调节母 线电压,尽可能使新能源发电功率和负载消耗功率 接近,节省蓄电池的能量,以促进电网更长时间的稳 定运行。

4 结束语

本文提出了一种直流微电网母线电压稳定控制 与系统能量管理的方法,实现了母线电压的稳定工 作以及能量管理的优化。以直流母线电压作为参 考,分别改变负载功率和光伏板功率来验证控制策 略的有效性,并仿真了处于极端条件下系统应对的 策略。

最终实验结果表明该控制策略能够有效地控制 母线电压的稳定,同时对蓄电池能量展开了良好管 理,避免蓄电池的过度充放电,并且处于极端条件下 的时候,系统也能够做到长期平稳运行。

参考文献

- [1] 韩肖清. 微电网研究综述[J]. 能源与节能, 2013, 13(11):3-4.
- [2] HUANG Yiping, MA Xiaoxuan, Research on microgrid technology
 [J]. Transactions of China Electronical Society, 2015, 30(S1): 320–328.
- [3] 张会强, 王宇拓, 王林川. 基于直流母线电压信号的直流微电 网协调控制[J]. 中国电力,2015,48(11):110-116.
- [4] 李玉梅, 查晓明, 刘飞, 等. 带恒功率负荷的直流微电网母线电 压稳定控制策略[J]. 电力自动化设备, 2014, 34(8): 57-64.
- [5] 王毅,张丽荣,李和明,等.风电直流微网的电压分层协调控制
 [J].中国电机工程学报,2013,33(4):16-24.
- [6] 童亦斌, 吴峂, 金新民, 等. 双向 DC/DC 变换器的拓扑研究 [J]. 中国电机工程学报, 2007,27(13): 81-86.
- [7] 韩腾飞,杨明发. 基于双模 MPPT 控制的光伏充电设计[J]. 电 气技术,2017,17(4):49-55.
- [8] 杨永恒,周克亮.光伏电池建模及 MPPT 控制策略[J].电工技 术学报,2011,26(S1):229-234.
- [9] 杨晓峰,郑琼林,林智钦,等. 用于直流电网的大容量 DC/DC 变 换器研究综述[J]. 电网技术, 2016,40(3):670-677.
- [10] 雷志方, 汪飞, 高艳霞,等. 面向直流微网的双向 DC-DC 变换 器研究现状和应用分析[J]. 电工技术学报,2016,31(22):137-147.