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Weakly supervised semantic segmentation pseudo—-label
generation algorithm based on SAM mask

LIU Baohu

(School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)

Abstract: The quality of pseudo—labels generated in weakly supervised semantic segmentation plays a crucial role in determining
the final segmentation results. Existing pseudo—label generation algorithms often utilize the Vision Transformer ( ViT) as the feature
extraction network. However, the over—smoothing of features by ViT leads to generalized activation regions. Therefore, this paper
proposes the integration of pseudo-labels generated by the Segment Anything Model ( SAM) to guide the focus of generalized
pseudo—labels on target regions. Firstly, data augmentation is applied to the original image, and pseudo-masks from different
augmented images are fused to enhance the accuracy of SAM-generated pseudo—labels. Subsequently, the fused pseudo—labels are
evaluated, and higher weights are assigned to pixels with more reliable predictions using entropy values. Additionally, a Class
Token Contrast ( CTC) module is introduced into ViT to promote consistency between representations of non - significant local
objects and global objects, enriching pseudo —labels with more target regions. Finally, convolutional networks are employed to
merge pseudo—labels generated by SAM and ViT. Experimental results demonstrate that the pseudo-labels generated in this paper,
tested on the battery blue film dataset, achieve an accuracy of 89.51% and an average segmentation rate of 85.65%.
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Fig. 1 General workflow of weakly supervised semantic

segmentation algorithm based on CAM
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Fig. 2 Flowchart of weakly supervised semantic segmentation guided by SAM
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Table 1 Comparative experiments of different networks
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