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摘　 要:
 

为提高传统配电网中压馈线合环操作的成功率,本文提出了一种基于卷积神经网络(Convolutional
 

Neural
 

Network,
 

CNN)和长短期记忆网络(Long
 

Short-Term
 

Memory,
 

LSTM)结合核密度估计的配电网中压馈线合环操作安全性评估方法。 首

先,利用配网计量自动化系统获取历史负荷数据、电网结构参数以及运行方式等数据并进行预处理,将预处理后的海量数据按时

间滑动窗口构造为连续的特征矩阵作为输入;其次,利用(Quantile
 

Regression
 

CNN-LSTM,QRCNN-LSTM)混合模型建立输入

特征与不同分位数下合环电流的映射关系,生成基于 QRCNN-LSTM 的中压馈线不同分位数下合环电流预测模型,进而实现其

分位数回归预测;最后,采用高斯核密度估计函数计算任意时刻的合环电流概率分布特性,并通过计算合环电流越线概率和越线

程度对合环操作进行安全性定量评估。 借助 DIgSILENT / PowerFactory 和 Matlab2020a 软件,案例分析在贵州某城市配电网中展

开,预想场景仿真结果初步表明所提方法的有效性和适应性,相关结论与讨论对配电网智能化技术研发有一定参考价值。
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Abstract:
 

To
 

enhance
 

the
 

success
 

rate
 

of
 

the
 

traditional
 

medium-voltage
 

feeder
 

ring
 

closure
 

operation
 

in
 

the
 

distribution
 

network,
 

this
 

paper
 

proposes
 

a
 

method
 

for
 

assessing
 

the
 

safety
 

of
 

medium - voltage
 

feeder
 

ring
 

closure
 

operations
 

based
 

on
 

a
 

combination
 

of
 

Convolutional
 

Neural
 

Network
 

(CNN)
 

and
 

Long
 

Short-Term
 

Memory
 

(LSTM),
 

incorporating
 

kernel
 

density
 

estimation.
 

Firstly,
 

the
 

historical
 

load
 

data,
 

grid
 

structure
 

parameters,
 

and
 

operational
 

modes
 

are
 

obtained
 

through
 

the
 

distribution
 

network
 

measurement
 

automation
 

system
 

and
 

subjected
 

to
 

preprocessing.
 

Then,
 

the
 

preprocessed
 

extensive
 

data
 

are
 

organized
 

into
 

a
 

continuous
 

feature
 

matrix
 

using
 

a
 

sliding
 

time
 

window.
 

Secondly,
 

a
 

hybrid
 

model
 

called
 

Quantile
 

Regression
 

CNN-LSTM
 

(QRCNN-LSTM)
 

is
 

employed
 

to
 

establish
 

the
 

mapping
 

relationship
 

between
 

input
 

features
 

and
 

ring
 

closure
 

currents
 

at
 

different
 

percentiles.
 

The
 

QRCNN-LSTM
 

model
 

is
 

generated
 

to
 

predict
 

ring
 

closure
 

currents
 

at
 

various
 

percentiles,
 

enabling
 

percentile
 

regression
 

prediction.
 

Finally,
 

a
 

Gaussian
 

kernel
 

density
 

estimation
 

function
 

is
 

employed
 

to
 

calculate
 

the
 

probability
 

distribution
 

characteristics
 

of
 

ring
 

closure
 

currents
 

at
 

any
 

given
 

moment.
 

The
 

safety
 

of
 

the
 

ring
 

closure
 

operation
 

is
 

quantitatively
 

assessed
 

by
 

computing
 

the
 

probability
 

of
 

exceeding
 

the
 

ring
 

closure
 

current
 

threshold
 

and
 

the
 

extent
 

of
 

the
 

exceedance.
 

The
 

proposed
 

method
 

is
 

applied
 

in
 

a
 

case
 

study
 

within
 

the
 

distribution
 

network
 

of
 

a
 

city
 

in
 

Guizhou
 

Province,
 

utilizing
 

DIgSILENT / PowerFactory
 

and
 

Matlab2020a
 

software.
 

Preliminary
 

simulation
 

results
 

under
 

anticipated
 

scenarios
 

demonstrate
 

the
 

effectiveness
 

and
 

adaptability
 

of
 

the
 

proposed
 

method.
 

The
 

relevant
 

conclusions
 

and
 

discussions
 

provide
 

valuable
 

insights
 

for
 

the
 

development
 

of
 

intelligent
 

technologies
 

in
 

distribution
 

networks.
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0　 引　 言

随着智能电网建设速度的加快,配电网合环自

愈[1]是智能电网建设必不可少的一个重要环节,通
过合环转供电可以有效减少配电网线路的停电时

间,降低运行的功率损耗等。 但是合环转供电一直

都是地区电网运行的一个关注难点。 因此,面向智

能电网建设的需求,10
 

kV 配电网馈线合环之前进

行合环电流预测与合环操作风险性评估[2-3] 对进一

步地提升供电可靠性十分重要。
长期以来,城市电网合环电流理论计算困难[4-6] ,

一直依靠“合环跳闸则不允许合环,合环不跳闸之

后则允许合环”的经验方法和合环试验决定何时和

是否可以进行合环操作,进而制定合环转供电操作

计划。 存在合环后过流跳闸导致合环操作不成功的

情况,降低了配电系统的供电安全性和可靠性。 文

献[2]提出了一种基于概率潮流的合环电流计算方

法,通过计算配电网馈线合环电流的概率分布情况,
考虑合环电流的越限概率,从而进行合环操作的安

全性评估。 文献[7]分析合环操作的运行方式,通
过建立合环电流计算模型,通过理想条件和极端条

件下各评估指标计算出各合环点的合环风险级别,
对广州电网的 10

 

kV 合环操作进行安全性分析。 文

献[8]考虑到传统的合环风险分析均基于离线软件

进行的,无法有效地反映电网运行的实时性,提出了

一种基于能量管理系统( EMS)的配电网馈线合环

风险评估系统。 文献[9]提出了一种基于模糊综合

评判的风险评估方法,建立了合环操作风险评估指

标体系,将该方法应用于 123 节点测试系统,将合环

操作风险分为 5 个等级,对评估结果进行分析,验证

所提方法的有效性和可行性。 文献[10] 针对现有

配电网合环操作分析系统中合环潮流计算模型缺乏

时效、合环阻抗计算粗略和缺少实用的缺点,利用

EMS 吸引获取实时模型和数据,全面地对合环操作

的安全性进行风险评估,从而保证电网和环操作的

安全性。 上述文献是在考虑某一断面负荷、以及在

配电网合环网络参数已知的情况下进行研究的。 然

而,实际上,合环网络参数,如线路长度、线路型号等

通常存在不准确甚至数据缺失等情况,并且实际负荷

情况也随时在变化。 因此,对于当前新形势下的合环

操作风险评估进行更深入的研究是必要的。
针对以上问题,本文考虑一种能够“博采众长”

的人工智能方法[11-12] ,同时,所生成的模型支持快速

计算,能够避免传统迭代寻根算法带来的计算量大与

收敛性问题。 考虑到负荷的波动性、不确定性以及新

能源接入的不确定性对合环电流的影响,本文提出了

一种基于分位数卷积神经网络(Quantile
 

Regression
 

Convolutional
 

Neural
 

Network,
 

QRCNN)和长短期记忆

网络( LSTM) [13-15] 结合核密度估计( Kernel
 

Density
 

Estimation,KDE) [16]的配电网中压馈线合环操作风险

评估方法。 该方法首先通过卷积神经网络提取具有

复杂动态变化特性的馈线负荷中的高阶特征,得到反

映馈线负荷变化的重要特征信息;接着,长短期记忆

神经网络基于提取的高阶特征进行分位数回归建模,
预测未来任意时刻不同分位数下的合环电流值;最
后,通过核密度估计对若干分位数下的合环电流预测

值进行拟合,得到任意时刻的馈线负荷概率密度曲

线。 以贵州某市配电网典型中压馈线为例,并与

QRCNN
 

和
 

QRLSTM 模型进行对比,结果表明本文所

提模型能够提供更优的概率预测结果,DlgSILNET 和

Matlab
 

R2020a 的仿真分析以及现场初步实测结果表

明了所提方法的准确性、适用性和有效性,可为配电

网安全运行提供更有效的决策信息。

1　 基于 QRCNN-LSTM 的馈线合环电流概

率预测模型

1. 1　 分位数回归

分位数回归是一种非参数回归方法,用于研究

自变量和因变量在不同条件下的条件分布情况。 与

传统的最小二乘回归不同,分位数回归不需要对残

差项做出任何假设,可以对因变量的各个条件分位

数进行建模,从而更加全面地理解自变量和因变量

之间的关系。 其基本原理是利用条件分位数函数来

描述自变量和因变量之间的关系。 在简单线性回归

中,最小二乘法估计的系数代表了因变量在自变量

等于给定值时的条件均值,而分位数回归的系数则

代表了因变量在自变量等于给定值时的条件分位

数。 因此,通过估计多个条件分位数,可以更全面地

了解因变量和自变量之间的关系,特别是在极端值

情况下的影响。 分位数回归是描述输出变量 Y 与

输入变量 X 之间的条件分位数关系的模型[17-20] ,在
本节中,矩阵 X 是合环电流预测模型的输入特征,
向量 Y 则是对应的合环电流。 其计算表达式为:
　 Q(τ ∣ X) = α0(τ) + α1(τ)x1 + α2(τ)x2 + … +

α n(τ)xn = Xα(τ) (1)
其中, Q(τ∣X) 表示τ分位数下输入特征X与输

出特征变量 Y 估计值;α(τ) = [α0(τ),α1(τ),
 

…,
αn(τ)]T 表示分位数模型参数,通过下式进行优化求解:
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min∑
N

i =1
ρτ(Yi - Xiα(τ))= min ∑

i∣Yi…Xiα(τ)
τ(Yi - Xiα(τ)) +

　 ∑
i∣Yi <Xiα(τ)

(τ - 1)(Yi - Xiα(τ)) (2)

其中, N 表示样本量, ρτ(t) 表示模型的损失函

数,对此可表示为:

ρτ( t) =
τt,　 　 　

 

t ≥ 0
(τ - 1) t,

 

t < 0{ (3)

1. 2　 QRCNN-LSTM
得到分位数回归模型的模型参数优化求解值之

后,再根据式(1)进行不同分位数下合环电流计算。 本

文将 QRCNN - LSTM 神经网络与分位数回归结合

(Quantile
 

Regression
 

QRCNN-LSTM)进行不同分位数

下合环电流预测[21-22] ,主要在本文设计的 QRCNN -
LSTM 模型基础上,构造的分位数损失函数公式为:

min∑
N

i = 1
ρ τ(Yi - f(W(τ),b(τ),X i) =

min ∑
i| Yi-f(W(τ),b(τ),Xi)

τ(Yi - f(W(τ),b(τ),X i)) +

∑
i| Yi < f(W(τ),b(τ),Xi)

(τ - 1)(Yi - f(W(τ),b(τ),Xi)) (4)

本文提出了基于 QR-CNN-LSTM 的配电网馈

线概率预测模型,通过 QRCNN -LSTM 预测不同分

位数条件下的合环电流值,再结合核密度估计最终

得到合环电流概率密度预测结果,其基本框架如图

1 所示。 图 1 中,该深度学习融合了 CNN 和 LSTM
神经网络。 其中,CNN 用于充分提取合环电流数据

的局部特征,以实现提高模型局部预测性能的效果。
CNN 模型的添加能够更大程度地追踪实际配电网

合环电流的变化特点。 LSTM 学习挖掘序列之间的

长期依赖关系,以弥补 CNN 的缺陷,采用 Dropout 策
略来避免模型的过渡拟合,随之提高模型的泛化能

力,最后输出不同分位数条件下合环电流预测结果。

Yα(τ1) Yα(τ2) Yα(τ3) Yα(τt)

Q(τ｜X)=[α0(τ),α1(τ)x1,α2(τ)x2,…,αn(τ)xn]

池化层

卷积层

卷积层

池化层

X1

X2

X3

Xi

Xn

配电网节点无功功率

合环馈线母线电压

馈线数据

上级电网等值负荷

馈线传输功率

数据预处理
异常移除并对缺失值填补 训练集，验证集，测试集划分 数据归一化

配电网节点有功功率

馈线直接相连上级电网潮流

Yα(τn-1) Yα(τn)

LSTM
LSTM

LSTM

LSTM

LSTM
LSTM

LSTM

LSTM

LSTM
LSTM

LSTM

LSTM

Yt Yt+1 Yt+n

Xt Xt+1 Xt+n

Dropout层 Dense层

合环电流特征

QR-CNN-LSTM模型训练

不同分位数条件下合环电流值

合环电流概率预测结果

核密度估计 概率密度曲线 概率累积分布

图 1　 基于 QRCNN-LSTM 合环电流概率预测模型

Fig.
 

1　 Closed-loop
 

current
 

probability
 

prediction
 

model
 

based
 

on
 

QRCNN-LSTM

2　 合环电流概率预测与合环操作风险评估

2. 1　 合环电流非参数核密度估计

核密度估计( KDE) 是一种无参概率密度估计

方法,用于估计数据的概率密度函数。 即基于观测

数据的样本点,在每个数据点周围设定一个核函数,
然后将所有核函数加权平均,得到整个数据集的概

率密度函数。 核密度估计的核心思想是,样本点周
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围越密集的核函数应该获得更大的权重,基于此可

有效地反映配电网馈线合环电流的不确定性特征。
核密度估计方法具有很好的可视化性质,在理

解数据分布的形态和密度的变化方面非常有用。 方

法的优点在于不需要预先假设概率分布类型,因此

就比参数化方法更加灵活,可以适用于各种类型的

数据。 同时,还可以通过不同的核函数和带宽选择

方法进行优化和调整,以便更好地适应数据集。 另

外,核密度估计还可以通过交叉验证等方法进行自

动带宽选择,从而提高了估计的准确性。 核密度估

计方法广泛应用于各种领域,如金融、生物学、地球

物理学和机器学习等。 具体地,可以用于描述实际

数据的分布情况,以及在建立预测模型和异常检测

方面的应用。
本文采用高斯核密度估计对 QRCNN-

 

LSTM 模

型预测的不同分位数下合环电流预测值进行拟合以

获得概率密度曲线,再对相应的合环电流概率密度

曲线积分得到概率累计分布函数,进而对合环风险

进行评估计算。 如果 Qy(τi) 是一组未知分布的样

本,则变量的核密度函数为:

f̂(y) = 1
nh∑

n

i
K(

y - Qy(τi)
h

) (5)

h ≈ 1. 06σn -0. 2 (6)

　 　 其中,
 

f̂(y) 表示概率密度函数;h 表示核密度估

计带宽;n 表示分位数总数;K(·) 表示核函数, 一般

情况下不同核函数估计结果不同,通常 Epanechnikov
核函数的均方误差是较好 的。 因 此 本 文 选 择

Epanechnikov 核函数,计算公式如下:

K(α) =
3
4

(1 - α2),
 

α ∈ [ - 1,1]

0,　 　 　 　 　 α ∉ [ - 1,1]

ì

î

í
ïï

ïï
(7)

　 　 其中, α 表示变量,可由下式计算求出:

α =
y - Qy(τi)

h
(8)

2. 2　 合环电流概率预测与风险评估

(1) 点预测评价指标。 为了测评 QRCNN -
LSTM 合环电流预测的有效性,本文选择预测区间

中中位数作为点预测评估数据,用于检验模型预测

的性能,选择文献[23]中的评价指标进行准确性评

估和预测误差校正。
(2)区间预测评价指标。 与点预测一样,在概

率预测分析中,预测区间(Prediction
 

Interval,
 

PI)的

质量评价也尤为重要。 本文采用预测区间覆盖率

(Prediction
 

Interval
 

Coverage
 

Percentage,PICP)作为

区间预测性能的指标[24] ,其计算公式如下:

PICP = 1
n ∑

n

i = 1
λ i (9)

λ i =
1,　 Yloopi ∈ [YLi,YUi]
0,　 Yloopi ∉ [YLi,YUi]

{ (10)

　 　 其中,YLi 表示置信区间下界;YUi 表示置信区间上界;
 

λi 表示合环电流预测值属于置信区间的个数。
同时,许多研究者[25] 在区间预测样本中只关注

到 PICP 的值,而忽略了预测区间宽度,选取目标的

极值作为区间预测的上下界,很容易得到较高的

PICP,但是对电力系统的规划与决策意义不大。 在

实际电网中,有效可靠的区间预测要求 PICP 的值

不小于其置信水平, 预测区间归一化平均宽度

( Prediction
 

Interval
 

Normalized
 

Average
 

Width,
PINAW) [26]平均宽度应尽可能地小。 PINAW 也是

预测区间的重要指标。 其计算公式如下:

PINAW = ∑
N

i = 1

YUi - YLi

NR
(11)

R = maxYα
i - minYα

i (12)
　 　 其中, N表示合环电流预测样本数;i表示序号;
YLi 表示合环电流概率预测置信下界;YUi 表示合环

电流概率预测置信上界;R 表示预测目标的最大、最
小值之差;Yi 主要用来归一化预测区间平均宽度。
　 　 (3)

 

概率预测评价指标。 采取连续分级概率评

分( Continuous
 

Ranked
 

Probability
 

Score,CRPS) [27] 。
CRPS 作为合环电流概率预测的评价指标,其值越

小说明概率预测效果越佳,其计算公式为:

PCRPS = 1
N∑

N

i = 1
∫+∞

-∞
(F(Ppi) - H(Ppi - Pri))2dPpi (13)

进一步,可推得:

F(Ppi) =∫Ppi

-∞
p(x)dx

H(Ppi - Pri) =
0,　 Ppi < Pri

1,　 Ppi ≥ Pri
{ (14)

　 　 其中, p 表示概率密度函数;P 表示累计分布函

数;H 表示阶跃函数。
(4)

 

合环操作越限概率计算。 本文考虑的合环

操作概率指标包括:合环越限概率 (P), 合环电流

最大越限率 (α), 平均越限率 (ε), 其计算公式分

别如下:
Im = F -1(99. 9%) (15)

P = P( It ≥ Is) = 1 - F( Is) (16)

α = (
Im
Is

- 1) × 100% (17)
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ε = (
∫Im

Is
x·f(x)dx

∫Im

Is
f(x)dx

- 1) × 100% (18)

　 　 其中, F(x) 表示合环电流概率累积分布函数;
Is 表示馈线容许最大载流量;Im 表示合环电流累计

分布函数概率为 99. 9% 处的合环电流值;It 表示合

环电流概率预测值。
(5)

 

合环越限风险计算。 根据风险评估定义可

知,风险值为风险的发生概率与风险的严重度相乘

积所得,本文合环操作电流风险指标为:

RI = ∑∫∞

1. 3
f( I

-

ab)g( I
-

ab)dI
-

ab (19)

　 　 其中, I
-

ab 表示馈线 ab 的实际潮流值; f( I
-

ab) 表

示合环电流预测概率密度函数; g( I
-

ab) 表示合环电

流越限严重度函数。 合环电流越限严重度函数采用

效用理论偏好型效用函数结合越限偏移量[28]表示:

g( I
-

ab) = eIev( I
-

ab) - 1
e - 1

(20)

　 　 合环电流偏移量计算公式为:

Iev( I
-

ab) =
I
-

ab - Iab

Iab
(21)

　 　 其中, Iab 表示馈线 ab 的基准电流值。
 

3　 合环操作风险评估方法流程

根据风险评估的定义,10
 

kV 馈线合环操作的

风险应包含 2 部分。 其一为合环操作风险可能造成

的后果,其二为和环操作风险发生的概率。 本文主

要分析合环发生的风险概率与严重度,进而综合评

估合环操作的风险大小。 方法技术路线见图 2,其
具体步骤如下:

(1)
 

利用 DlgSILENT 准动态仿真模块,仿真获

取合环馈线的预测数据集,包括模型的输入和输出

数据,采用基于 CNN-LSTM 深度学习模型进行合环

电流确定性预测。
(2)

 

利用所提的 CNN-LSTM 模型设计 QRCNN-
LSTM 分位数回归预测模型,得到各分位点下合环

电流预测值。
(3)

 

将不同分位数条件下的合环电流预测值作

为 KDE 的输入,采样非参数核密度估计计算得到合

环电流概率密度函数;最后对合环电流概率密度函

数积分获取合环电流累计概率分布曲线。
(4)

 

利用效用理论偏好型函数计算合环操作馈

线合环电流越限的严重度函数。
(5)

 

根据合环电流概率累计分布曲线结合馈线

与合环电流越限严重度函数建立合环电流越限风险

指标。
根据贵州某城市 10

 

kV 电网合环操作系统的建

模、合环电流点预测、以及合环电流的概率预测情况

分析合环操作风险可能发生的情况,同时综合考虑馈

线合环电流越限情况以及合环严重度情况,本文将配

电网馈线的合环操作风险划分为 3 个风险等级[29] ,
分别是:C 级风险(一般风险)、B 级风险(较大风险)、
A 级风险(重大风险),根据本文所提的评估模型具体

如下:风险指标 RI ≥ 50 为 A 级风险,风险指标

20 ≤ RI < 50 为 B 级风险,风险指标 2 ≤RI < 20 为

C 级风险。

预测不同分位数

下合环电流
核密度估计

QRCNN-LSTM合环
电流分位数回归

合环电流概率
密度曲线

合环电流累积概率
分布曲线

计算合环电流越限
严重度

合环操作风险评估

CNN合环电流
特征提取

初始化第i个
分位点

合环网络中各历史
数据

开始 结束

图 2　 合环操作风险性评估方法技术路线图

Fig.
 

2　 Roadmap
 

for
 

risk
 

assessment
 

methodology
 

of
 

closed-loop
 

operations

4　 算例分析

算例分析在贵州某城市一个 10
 

kV 配电网系统

中开展, 对上述方法进行算例分析验证, 借助

DlgSILENT 软件搭建 t 同文献[23] 的部分地理接

线,数据背景为该市某种运行方式为初始条件。 本

文通过 BPA 获取的运行方式数据导入 DlgSILENT
所建立的合环馈线模型。 2 条 10

 

kV 馈线分别为不

同的 110
 

kV 变电站的 10
 

kV 馈线,2 条馈线 10
 

kV
母线均考虑光伏接入,典型光伏发电数据与负荷数

据同文献[23]。 将数据导入模型获取某年的仿真

数据进行模型训练与预测。
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4. 1　 概率预测与核密度估计

确定了模型参数与数据样本后,将 CNN 提取的

合环电流特征变量输入到模型中进行训练、测试和

预测。 分位数的取值范围为[0. 01,0. 99],间隔为

0. 01。 根据前文步骤,进行合环电流不同分位数条

件下合环电流概率预测,得到某天合环电流预测结

果。 图 3 ~图 5 展示了不同置信水平下合环电流采

集间隔为 15
 

min 的区间预测结果。 图 3 ~ 图 5 中可

以看出,区间变化趋势整体上和合环电流预测区间

均覆盖了实际值,一定程度上减少由于负荷波动带

来的预测误差。 采用 PICP 和 PINAW 对本文方法

的预测区间进行误差评价,得到的不同馈线处置信

水平 90%的合环电流预测区间误差见表 1。

PIs(80%)
PIs(90%)
真实值

0.6

0.5

0.4

0.3

0.2

0.1

0 20 40 60 80
采样点/15min

合
环

电
流

/k
A

图 3　 不同置信水平下合环电流 IA 区间预测

Fig.
 

3　 Prediction
 

of
 

closed-loop
 

current
 

IA
 

interval
 

at
 

different
 

confidence
 

levels

PIs(80%)
PIs(90%)
真实值

0.6

0.5

0.4

0.3

0.2

0.1

0 20 40 60 80
采样点/15min

合
环

电
流

/k
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图 4　 不同置信水平下合环电流 IB 区间预测

Fig.
 

4　 Prediction
 

of
 

closed-loop
 

current
 

IB
 

interval
 

at
 

different
 

confidence
 

levels

0.5

0.4

0.3

0.2

0.1

合
环

电
流

/k
A PIs(80%)

PIs(90%)
真实值

0 20 40 60 80
采样点/15min

图 5　 不同置信水平下合环电流 Iloop 区间预测

Fig.
 

5　 Prediction
 

of
 

closed-loop
 

current
 

Iloop
 

interval
 

at
 

different
 

confidence
 

levels

表 1　 不同位置合环电流区间预测偏差

Table
 

1 　 Prediction
 

deviations
 

of
 

closed-loop
 

current
 

intervals
 

at
 

different
 

locations

模型 预测对象 PICP / % PINAW CRPS

QRCNN IA 91. 2 0. 125 0. 056
 

3

IB 98. 6 0. 199 0. 048
 

6

Iloop 92. 3 0. 158 0. 063
 

5

QRLSTM IA 90. 3 0. 165 0. 044
 

5

IB 91. 5 0. 163 0. 055
 

2

Iloop 92. 3 0. 158 0. 052
 

3

QRCNN-LSTM IA 94. 9 0. 120 0. 045
 

3

IB 93. 1 0. 180 0. 046
 

3

Iloop 92. 8 0. 190 0. 042
 

1

　 　 由表
 

1 可以看出,从整体上看,QRCNN 预测模型

的 PICP 值最低值为 91. 2%,QRLSTM 预测模型的
 

PICP 最低值为 90. 3%,QRCNN -LSTM 预测模型的

PICP 最低值为 92. 8%,都高于置信水平 90%。 都满足

高于置信水平的要求,且本文所提的 QRCNN-LSTM 预

测模型具有较好的准确性。 区间宽度的精锐程度处于

相对合理的范围之内。 同时由 CRPS 值也可以看出模

型预测的概率连续情况。 发现本文所提的模型具有

较好的连续性能。
进一步地,为了反映负荷波动等信息带来的合

环电流不确定的影响,以及计算合环风险评估指标,
对某时刻的概率预测结果进行展示,具体如图 6 ~图

8 所示。 分别反映了某时刻合环操作时,两线首段

IA、IB、合环联络开关处 Iloop 合环电流的合环电流

概率密度分布曲线以及相应的累计概率分布,通过

合环概率密度曲线有效地反映了由于间歇性负荷的

波动以及新能源接入配电网情况下产生的不确定信

息,将合环电流预测值与馈线的最大容许载流量进

行对比计算出合环操作的潮流越限概率,进而实现

合环操作的风险评估。
1.0

0.8

0.6

0.4

0.2

0
400 450 500 550 600

合环电流IA/A

概
率

累
计

分
布

图 6　 某时刻 IA 合环电流概率密度曲线和相应的概率分布曲线

Fig.
 

6 　 Probability
 

density
 

curve
 

of
 

closed - loop
 

current
 

IA
 

and
 

corresponding
 

probability
 

distribution
 

curve
 

at
 

a
 

specific
 

moment
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(b)概率分布曲线

图 7　 某时刻 IB 概率密度曲线和相应的概率分布曲线

Fig.
 

7 　 Probability
 

density
 

curve
 

of
 

closed - loop
 

current
 

IB
 

and
 

corresponding
 

probability
 

distribution
 

curve
 

at
 

a
 

specific
 

moment
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(a)概率密度曲线
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图 8　 某时刻 Iloop 概率密度曲线和相应的概率分布曲线

Fig.
 

8　 Probability
 

density
 

curve
 

of
 

closed-loop
 

current
 

Iloop
 

and
 

corresponding
 

probability
 

distribution
 

curve
 

at
 

a
 

specific
 

moment

4. 2　 合环操作风险评估

通过上述步骤,即可得到不同分位数下合环电

流概率密度预测结果以及对应的任意时刻合环电流

概率累计分布曲线。 最后按照步骤 6 所述,结合合

环电流概率预测结果对比馈线最大容许载流量,利
用某时刻预测结果计算合环馈线各处合环电流安全

性评估指标,其结果见表 2。
表 2　 合环电流概率越限指标

Table
 

2　 Exceedance
 

indicator
 

for
 

closed-loop
 

current
 

probability%

合环电流 最大越限率 越限概率 平均越限概率

IA 8. 0 0. 23 4. 17
IB 21. 6 18. 42 12. 30

Iloop 13. 8 2. 12 2. 10

　 　 同时为了反映合环过程的暂态情况,本文利用

该时刻合环稳态电流中位数点预测值,结合文献

[23]合环冲击电流分析公式计算获取该时刻合环

冲击电流,其结果见表 3。 由表 3 可看出合环馈线

IB 处合环冲击电流略大于馈线 A1 以及合环联络开

关处,基本符合概率预测结果。 合环时馈线为最大

冲击电流有效值分别为小于Ⅰ段保护值(1
 

000
 

A
时限 0. 1

 

s),二段保护值(550
 

A,时限 0. 3
 

s)即馈线

A1 和馈线
 

B1 以及合环联络开关处 Iloop 中基本不

会出现因暂态冲击电流过大而导致电流
 

I
 

段保护动

作的情况。
表 3　 不同馈线合环冲击电流与实际值

Table
 

3 　 Differential
  

closed - loop
  

impact
 

currents
  

across
 

various
 

feeders
 

compared
 

to
 

actual
 

values A

合环电流
合环稳态电流

实际值

合环稳态电流

中位数预测值

合环冲击电流

有效值

IA 431. 9 394. 18 638. 57
IB 516. 3 510. 80 827. 50

Iloop 399. 1 385. 55 624. 59

　 　 根据合环概率预测结果(见表 2),再根据式

(20)、式(21)计算合环越限严重度,同时结合概率

预测结果得到风险评估计算结果见表 4。
 

表 4　 合环操作风险评估值

Table
 

4　 Risk
 

assessment
 

values
 

for
 

feeder
 

closed-loop
 

operations

合环电流
综合合环电流

越限概率 / %
合环电流越限

严重度 / %

合环风险值 /
RI

IA 0. 23 0. 012
 

4 0. 002
 

852
IB 18. 42 0. 143

 

6 2. 645
 

100
Iloop 2. 12 0. 032

 

0 0. 067
 

800

　 　 表 4 风险评估结果表明,合环馈线 B1 首段的风

险值为 2. 645
 

1,根据前文规定的风险情况,该馈线

风险等级为 C 级,操作风险性较小,同时对应的合

环电流为 516. 3
 

A,满足馈线的载流量。 此外,根据

表 3 的冲击电流计算结果,均为超过电流一段保护

整定值 1. 46
 

kA,满足实际情况,馈线 B1 首端合环

风险评估值在安全范围内,整体情况表明合环馈线
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可进行合环操作,与现场合环情况一致,实际合环场

景也表明该馈线具有良好的合环操作条件。 这就表

明本文所提的基于 QRCNN -LSTM -KDE 的配电网

合环操作风险评估方法,可以有效地提高合环操作

的成功率,并且验证了该方法的准确性和时效性。
将该方法应用于实际生产中,可以快速对 10

 

kV 配

电网合环操作的安全性进行有效评估,并为合环决

策的制定提供理论支持。

5　 结束语

本文提出一种基于 QRCNN-LSTM 的配电网中

压馈线合环电流概率与合环操作安全性评估方法。
借助 Matlab

 

2020a 和 DlgSILENT,以贵州某城市一

个配电网为例,仿真初步表明了所提方法的有效性,
此外有以下结论:

(1)不同边界条件下的仿真测试结果表明,相较

于 QRLSTM - KDE、 QRCNN - KDE, 所 提 QRCNN -
LSTM-KDE,预测区间覆盖率满足预设要求,且区间

平均宽度最小,验证了模型有较好的准确性、优越性。
(2)该方法能够有效刻画未来合环电流的波动

性和不确定性,反映了实际配电网中的负荷分布对

合环操作安全性的影响,能够为配电网的安全运行

提供更多的决策信息。
(3)

 

运用 QRCNN-LSTM、迁移学习等,有望对

于未来大规模分布式电源接入的新型配电网中压馈

线合环电流预测等有较好的应用前景。
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